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 Abstract 

In this study, a detailed analysis of Navier Stokes equations under uncertainty with no slip conditions by employing 

neutrosophic numbers is carried out. By employing appropriate similarity transformation, the governing PDE's are transformed 

into ODE's. By using BVP4C approach, these ODE's are transmuted into neutrosophic differential equations (NDE) by 

employing (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 approach. The results are presented graphically to analyze the effectiveness of the above method. 

Keywords: neutrosophic number, no slip condition, neutrosophic differential equations, triangular neutrosophic number, 

trapezoidal neutrosophic number. 

Introduction 

According to Zadeh(1965), the theory of fuzzy set is characterized by the membership function. This idea was 

expanded upon by Atanassov (1986 and 1999), by adding a non-membership function. This gives rise to a novel idea known 

as the Intuitionistic Fuzzy Set. Triangular intuitionistic fuzzy sets were later pictured in 2007 by Liu and Yuan by combining 

triangle fuzzy sets with intuitionistic fuzzy sets. Ye (2014) created trapezoidal Intuitionistic fuzzy sets by substituting 

trapezoidal fuzzy numbers for triangular fuzzy numbers in both truth and falsity membership functions. However, the objective 

of indeterminacy is absent from intuitionistic fuzzy logic and traditional fuzzy logic.  

Smarandache (1998, 2002) improved the framework beyond fuzzy logic by adding the indeterminacy term to address 

this flaw. Thus, truth, indeterminacy and false values are the three parts of neutrosophic logic, and membership values are 

specified inside the non-standard interval ]0, 1[+− . By adding indeterminacy to the fuzzy logic framework, Smarandache 

(2005) paraded the idea of Neutrosophic sets as a simplified form of intuitionistic fuzzy sets. The description of ambiguity, 

imprecision, and inconsistency is made possible by this structure. 

System of ordinary differential equations of order one represents the rate of change of multiple variables 

simultaneously. This allows analyzing how these variables interact and evolve overtime with respect to another independent 

variable. It has many applications in Physics, chemistry, biology, economics and finance, engineering, weather forecasting and 

social sciences. Fuzzy differential equations (FDEs) arrive as a realistic way to model the promulgation of conscious uncertainty 

in a powerful environment. Bede et al. [9] investigated first order linear FDE’s under various interpretations and demonstrated 

that the behavior of the solutions varies depending on the interpretation used.  

Further, to improve upon fuzzy differential equations, intuitionistic fuzzy differential equations were developed. 

Ettoussi et al. [11] explored how intuitionistic fuzzy differential equations can be solved uniquely and exist using method of 

successive approximation and discuss the continuity of these solutions in the context of fuzzy set theory. Neutrosophic 

differential equations allow for a more accurate and realistic modeling of these systems by capturing all facets of uncertainty. 

Moi et al. [12] has examined second order boundary value problem through neutrosophic differential equation.  

From the above mentioned literature survey, researchers used various methods to solve the Navier-Stokes equation. 

According to my knowledge no research is taken to address the problem using trapezoidal and triangular fuzzy numbers. This 

research fulfills the gap by solving the problem using BVP4C approach in neutrosophic environment.  

2. Preliminaries 

In this segment, few preliminary conceptualization of neutrosopic set and some notations are mentioned for better 

understanding. 

Definition 2.1: Universal set 

A universal set is the set of all objects or elements under consideration in a specific context. It is indicated by 𝑋. 

Definition 2.2 : Neutrosophic set(Kamal et. al, 2023) 

Let 𝑋 is a universal set. A Neutrosophic set (𝒩̅𝑠) on 𝑋 is defined as 𝒩̅𝑠 = {𝒯𝒩̅𝑠(𝑥), 𝒥𝒩̅𝑠(𝑥), ℱ𝒩̅𝑠(𝑥): 𝑥𝜖𝑋}, where 

𝒯𝒩̅𝑠(𝑥) , 𝒥𝒩̅𝑠(𝑥), ℱ𝒩̅𝑠(𝑥) : 𝑋 ⟶ ]0, 1[− + classifies the degree of uncertainty, degree of hesitation and degree of falseness 

respectively of the element  

𝑥𝜖𝑋/   0 ≤− 𝒯𝒩̅𝑠(𝑥) + 𝒥𝒩̅𝑠(𝑥) + ℱ𝒩̅𝑠(𝑥) ≤ 3
+. 

Definition 2.3 : (𝑨̅, 𝑩̅, 𝚪̅)𝒄𝒖𝒕 of Neutrosophic set (Sumathi and Priya, 2018) 

The(𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 of Neutrosophic set is defined as 𝒩̅𝑠(𝐴̅, 𝐵̅, Γ̅) = {〈𝒯𝒩̅𝑠(𝑥), 𝒥𝒩̅𝑠(𝑥), ℱ𝒩̅𝑠(𝑥)〉: 𝑥𝜖𝑋, 𝒯𝒩̅𝑠(𝑥) ≥ 𝐴̅,

𝒥𝒩̅𝑠(𝑥) ≥  𝐵̅, ℱ𝒩̅𝑠(𝑥) ≥ Γ̅}, where 𝐴̅, 𝐵̅, Γ̅ϵ[0, 1] such that 0 ≤ 𝐴̅ + 𝐵̅ + Γ̅ ≤ 3. 

Definition 2.4: Neutrosophic number (Sumathi and Priya, 2018) 

A Neutrosophic number defined on the set of real numbers ℝ is a Neutrosophic number, if it satisfies the below mentioned 

properties: 
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i. 𝒩̅𝑠 is normal if there exists 𝑥0𝜖ℝ:: 𝒯𝒩̅𝑠(𝑥0), (𝒥𝒩̅𝑠(𝑥0) = ℱ𝒩̅𝑠(𝑥0) = 0). 

ii. 𝒩̅𝑠 is convex for the truth function  𝒯𝒩̅𝑠(𝑥) (ie) (𝒯𝒩̅𝑠(𝑐𝑥1 + (1 − 𝑐)𝑥2) ≥ 𝑚𝑖𝑛 (𝒯𝒩̅𝑠(𝑥1), 𝒯𝒩̅𝑠(𝑥2))) for all 𝑥1, 𝑥2 ∈

ℝ and 𝑐 ∈ [0, 1]. 
iii. 𝒩̅𝑠 is concave for the indeterministic function 𝒥𝒩̅𝑠(𝑥) and falsity function ℱ𝒩̅𝑠(𝑥). 

(𝑖𝑒) 𝒥𝒩̅𝑠 (𝑐𝑥1 + (1 − 𝑐)𝑥2 ≥ 𝑚𝑎𝑥 (𝒥𝒩̅𝑠(𝑥1), 𝒥𝒩̅𝑠(𝑥2))) and  ℱ𝒩̅𝑠 (𝑐𝑥1 + (1 − 𝑐)𝑥2 ≥ 𝑚𝑎𝑥 (ℱ𝒩̅𝑠(𝑥1), ℱ𝒩̅𝑠(𝑥2))), 

for all 𝑥1, 𝑥2 ∈ ℝ and 𝑐 ∈ [0, 1]. 
Definition 2.5 : Triangular Neutrosophic Number (Sumathi and Priya, 2018) 

A Triangular Neutrosophic Number is a subset of Neutrosophic set in ℝ with the following truth function, 

indeterministic function, falsity function is defined as  

  𝒯𝒩̅𝑠(𝑥) =

{
 
 

 
 (

𝑥−𝑎1

𝑎2−𝑎1
)𝜔𝒩̅𝑠 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2 

𝜔𝒩̅𝑠 𝑖𝑓 𝑥 = 𝑎2

(
𝑎2−𝑥

𝑎3−𝑎2
)

0

𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝒯𝒩̅𝑠(𝑥) =

{
 
 

 
 (

𝑎1−𝑥

𝑎2−𝑎1
) 𝛿𝒩̅𝑠 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛿𝒩̅𝑠 𝑖𝑓 𝑥 = 𝑎2

(
𝑥−𝑎3

𝑎3−𝑎2
)

1

𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (2.1) 

ℱ𝒩̅𝑠(𝑥) =

{
 
 

 
 (

𝑎2−𝑥

𝑎2−𝑎1
) 𝜖𝒩̅𝑠 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝜖𝒩̅𝑠 𝑖𝑓 𝑥 = 𝑎2

(
𝑥−𝑎3

𝑎3−𝑎2
)

1

𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Where  0 ≤− 𝒯𝒩̅𝑠(𝑥) + 𝒥𝒩̅𝑠(𝑥) +  ℱ𝒩̅𝑠(𝑥) ≤ 3+, 𝑥𝜖𝒩̅𝑠. 

Definition 2.6 : (𝑨̅, 𝑩̅, 𝚪̅)𝒄𝒖𝒕 of Triangular Neutrosophic Number (Sumathi and Priya, 2018) 

The (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 of Triangular Neutrosophic Number = 〈(𝑎1, 𝑎2, 𝑎3);𝜔𝒩̅𝑠 , 𝛿𝒩̅𝑠 , 𝜖𝒩̅𝑠〉 is defined as follows: 

𝒩̅𝑠(𝐴̅,𝐵̅,Γ̅) = [𝒯𝒩̅𝑠
1(𝐴̅), 𝒯

𝒩̅𝑠
2(𝐴̅);  𝒥

𝒩̅𝑠
1(𝐵̅), 𝒥

𝒩̅𝑠
2(𝐵̅); ℱ

𝒩̅𝑠
1(Γ̅), ℱ

𝒩̅𝑠
2(Γ̅)], where 

𝒯
𝒩̅𝑠

1(𝐴̅) = [𝑎1 + 𝐴̅(𝑎2 − 𝑎1)]𝜔𝒩̅𝑠  , 𝒯𝒩̅𝑠
2(𝐴̅) = [𝑎3 − 𝐴̅(𝑎3 − 𝑎2)]𝜔𝒩̅𝑠  

𝒥
𝒩̅𝑠

1(𝐴̅) = [𝑎2 − 𝐴̅(𝑎2 − 𝑎1)]𝛿𝒩̅𝑠  , 𝒥𝒩̅𝑠
2(𝐴̅) = [𝑎2 + 𝐵̅(𝑎3 − 𝑎2)]𝛿𝒩̅𝑠             (2.2) 

ℱ
𝒩̅𝑠

1(𝐴̅) = [𝑎2 − Γ̅(𝑎2 − 𝑎1)]𝜖𝒩̅𝑠 , ℱ𝒩̅𝑠
2(𝐴̅) = [𝑎2 + Γ̅(𝑎3 − 𝑎2)]𝜖𝒩̅𝑠  

Here, 0 ≤ 𝐴̅ ≤ 1, 0 ≤ 𝐵̅ ≤ 1, 0 ≤ Γ̅ ≤ 1 and 0− ≤ 𝐴̅ + 𝐵̅ + Γ̅ ≤ 3+ which is shown in figure 1. 

 
Figure 1. Membership function of Triangular Neutrosophic number 
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Definition 2.7 : Trapezoidal Neutrosophic Number (Sumathi and Sweety, 2019) 

A Trapezoidal Neutrosophic Number is a subset of  𝒩̅𝑠 in ℝ with the following truth function, indeterministic function, 

falsity function is defined as 

𝒯𝒩̅𝑠(𝑥) =

{
 
 

 
 (

𝑥−𝑎1

𝑎2−𝑎1
)𝜔𝒩̅𝑠 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2 

𝜔𝒩̅𝑠 𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

(
𝑎4−𝑥

𝑎4−𝑎3
)

0

𝑖𝑓 𝑎3 ≤ 𝑥 ≤ 𝑎4

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝒯𝒩̅𝑠(𝑥) =

{
 
 

 
 (

𝑎2−𝑥

𝑎2−𝑎1
) 𝛿𝒩̅𝑠 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛿𝒩̅𝑠 𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

(
𝑎4−𝑥

𝑎4−𝑎3
)

1

𝑖𝑓 𝑎3 ≤ 𝑥 ≤ 𝑎4

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (2.3) 

ℱ𝒩̅𝑠(𝑥) =

{
 
 

 
 (

𝑎2−𝑥

𝑎2−𝑎1
) 𝜖𝒩̅𝑠 𝑖𝑓 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝜖𝒩̅𝑠 𝑖𝑓 𝑎2 ≤ 𝑥 ≤ 𝑎3

(
𝑎4−𝑥

𝑎4−𝑎3
)

1

𝑖𝑓 𝑎3 ≤ 𝑥 ≤ 𝑎4

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Where  0 ≤− 𝒯𝒩̅𝑠(𝑥) + 𝒥𝒩̅𝑠(𝑥) +  ℱ𝒩̅𝑠(𝑥) ≤ 3+, 𝑥𝜖𝒩̅𝑠. 

Definition 2.8: (𝑨̅, 𝑩̅, 𝚪̅)𝒄𝒖𝒕 of Trapezoidal Neutrosophic Number(Sumathi and Sweety, 2019) 

The (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 of Trapezoidal Neutrosophic Number =  〈(𝑎1, 𝑎2, 𝑎3, 𝑎4); 𝜔𝒩̅𝑠 , 𝛿𝒩̅𝑠 , 𝜖𝒩̅𝑠〉 is defined as follows: 

𝒩̅𝑠(𝐴̅,𝐵̅,Γ̅) = [𝒯𝒩̅𝑠
1(𝐴̅), 𝒯

𝒩̅𝑠
2(𝐴̅);  𝒥

𝒩̅𝑠
1(𝐵̅), 𝒥

𝒩̅𝑠
2(𝐵̅); ℱ

𝒩̅𝑠
1(Γ̅), ℱ

𝒩̅𝑠
2(Γ̅)], where 

𝒯
𝒩̅𝑠

1(𝐴̅) = [𝑎1 + 𝐴̅(𝑎2 − 𝑎1)]𝜔𝒩̅𝑠  , 𝒯𝒩̅𝑠
2(𝐴̅) = [𝑎4 − 𝐴̅(𝑎3 − 𝑎2)]𝜔𝒩̅𝑠  

𝒥
𝒩̅𝑠

1(𝐴̅) = [𝑎2 − 𝐴̅(𝑎2 − 𝑎1)]𝛿𝒩̅𝑠  , 𝒥𝒩̅𝑠
2(𝐴̅) = [2 + 𝐵̅(𝑎3 − 𝑎2)]𝛿𝒩̅𝑠                (2.4) 

ℱ
𝒩̅𝑠

1(𝐴̅) = [𝑎2 − Γ̅(𝑎2 − 𝑎1)]𝜖𝒩̅𝑠 , ℱ𝒩̅𝑠
2(𝐴̅) = [𝑎3 + Γ̅(𝑎3 − 𝑎2)]𝜖𝒩̅𝑠  

Here, 0 ≤ 𝐴̅ ≤ 1, 0 ≤ 𝐵̅ ≤ 1, 0 ≤ Γ̅ ≤ 1 and 0− ≤ 𝐴̅ + 𝐵̅ + Γ̅ ≤ 3+ which is shown in figure 2.  

 
Figure 2: Membership function of Trapezoidal Neutrosophic Number 

Definition 2.9 : Strong and Weak solution (Sumathi and Sweety, 2019) 

Let the solution of the Neutrosophic differential equation be 𝑦(𝑥) and its (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 be 

[𝑦1(𝑥, 𝐴̅), 𝑦2(𝑥, 𝐴̅), 𝑦1
′(𝑥, 𝐵̅), 𝑦2

′(𝑥, 𝐵̅), 𝑦1
′′(𝑥, Γ̅), 𝑦2

′′(𝑥, Γ̅)]. The solution is string if 

i. 
𝑑𝑦1(𝑥,𝐴̅)

𝑑𝐴̅
> 0, 

𝑑𝑦2(𝑥,𝐴̅)

𝑑𝐴̅
< 0 ∀ 𝐴̅  ∈ [0,1], 𝑦1(𝑥, 1) ≤ 𝑦2(𝑥, 1). 

ii. 
𝑑𝑦1

′(𝑥,𝐵̅)

𝑑𝐵̅
> 0, 

𝑑𝑦1
′(𝑥,𝐵̅)

𝑑𝐵̅
< 0 ∀ 𝐴̅  ∈ [0,1], 𝑦1

′(𝑥, 0) ≤ 𝑦2
′(𝑥, 0).   (2.5) 

iii. 
𝑑𝑦1

′′(𝑥,Γ̅)

𝑑,Γ̅
> 0, 

𝑑𝑦2
′′(𝑥,Γ̅)

𝑑,Γ̅
< 0 ∀ 𝐴̅  ∈ [0,1], 𝑦1

′′(𝑥, 0) ≤ 𝑦2
′′(𝑥, 0). 

If not, the solution is a weak one. 

. 
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3. Governing equations 

Consider the steady, incompressible, two-dimensional boundary layer flow across a static wedge. Figure 3. shows the 

geometrical coordinates and the physical model. We take into account the consequences of the no-slip condition and suppose 

that the free stream's velocity is 𝑢𝑒(𝑥) = 𝑈𝑥
𝑚. Look at a Cartesian coordinate system (𝑥, 𝑦), where 𝑥 and 𝑦 are the coordinates 

measured normal to the wedge and along its surface, respectively. The partial differential equations governing the problem 

with the boundary conditions under the aforementioned assumptions are  

     
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0            (3.1) 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈

𝑑𝑈

𝑑𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑥2
−

𝜎𝐵0
2

𝜌
(𝑢 − 𝑈)       (3.2) 

With boundary conditions 

 𝑢 = 0, 𝑣 = 0   at 𝑦 = 0 

 𝑢(𝑥, 𝑦) = 𝑢𝑒(𝑥)  as 𝑦 ⟶ ∞       (3.3) 

 
Figure 3: Physical model and coordinate system 

Here, the velocity components in the 𝑥 and 𝑦 directions are denoted by 𝑢 and 𝑣, respectively. 𝐵0 is the magnetic 

strength, 𝜈 is the kinematic fluid viscosity, 𝜌 is the fluid density, 𝜎 is the electrical conductivity and 𝑈 is the external velocity 

at the boundary layer’s edge.  

We introduce the similarity variable 𝜍 and stream function 𝜒(𝑥, 𝑦) as defined in Khan et al (2021). 

𝜍 = √
𝑐(𝑚+1)

2𝜈𝑓
𝑦 and 𝜒(𝑥, 𝑦) = √

2𝑐𝜈𝑓

𝑚+1
𝑥𝑚+1𝑓(𝜍)      (3.4) 

Here, 𝑓(𝜍) is the dimensionless stream function. The corresponding velocity components can be expressed as 

 𝑢 =
𝜕𝜒

𝜕𝑦
= 𝑐𝑥𝑚𝑓′(𝜍), 𝑣 = −

𝜕𝜒

𝜕𝑥
= √

−𝜈𝑓𝑐(𝑚+1)𝑥
𝑚−1

2
[𝜍𝑓′(𝜍)

(𝑚−1)

(𝑚+1)
+ 𝑓(𝜍)]  (3.5) 

By substituting the above in the boundary layer equations (3.1) and (3.2), we obtain the transformed equation as  

𝑓′′′(𝜍) +𝑓′(𝜍)𝑓(𝜍) + 𝛽 [1 − (𝑓′(𝜍))
2
] + 𝑀2(1 − 𝑓′(𝜍)) = 0    (3.6) 

Where 𝛽 =
2𝑚

𝑚+1
, m is related to external velocity and 𝑈(𝑥)  ∝  𝑥𝑚 and 𝑀2 =

𝜎𝐵0
2

𝜌𝑀𝑈2
 

The appropriate boundary conditions are 

𝑓(𝜍) =  0,        𝑓′(𝜍) =  0 at 𝜍 = 0 

𝑓′(𝜍) ⟶ 1        as 𝜍 ⟶ ∞                                                                    (3.7) 

By using the above equation (3.6), the outcome of pressure gradients on the boundary layer flow can be analyzed. 

Positive  𝛽 (𝑚 > 0)corresponds to accelerating flow, while negative 𝛽 (𝑚 < 0) corresponds to decelerating flow. 

4. Numerical Technique 

BVP4C approach is adopted to solve the third order boundary value problem(BVP) by converting into initial value 

problem(IVP).  The method involves guessing the initial conditions for the IVP at 𝜍 = 0, integrating the first order ODE’s and 

adjusting the guessed initial conditions to satisfy the boundary conditions at the end point 𝜍 ⟶ ∞. 

Equation (3.6) is transformed into first order ODE’s in the form 

(

𝑦1
′

𝑦2
′

𝑦3
′
) = (

𝑦2
𝑦3

−𝑦1𝑦2 − 𝛽(1 − 𝑦2
2) − 𝑀2(1 − 𝑦2)

)      (4.1) 

 



https://mswmanagementj.com/ 

MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal 

ISSN: 1053-7899 
Vol. 36 Issue 1, Jan-June 2026, Pages: 1134-1144 

1138 

  

  

with corresponding boundary conditions 

𝑦1(𝜍) =  𝑦2(𝜍) =  0       at 𝜍 = 0 

𝑦2(𝜍) ⟶ 1        as 𝜍 ⟶ ∞                       (4.2)                                                   

5. Boundary layer equation in Neutrosophic Environment 

Under the Neutrosophic context, the function 𝑓(𝜍) and its derivatives can be expressed as three components each; 

𝐴̅(truth), 𝐵̅(indeterminacy) and Γ̅(falsity). Hence, 𝑓(𝜍) can be written as 

 𝑓(𝜍) = (𝑓(𝜍, 𝐴̅), 𝑓(𝜍, 𝐵̅), 𝑓(𝜍, Γ̅))        (5.1) 

Hence, for the function 𝑓(𝜍) and its derivatives, the three corresponding components must be considered. The Neutrosophic 

form of the boundary layer equation can be written as  

𝑓′′′(𝜍, 𝐴̅) + 𝑓′(𝜍, 𝐴̅)𝑓(𝜍, 𝐴̅)  +𝛽𝐴̅ [1 − (𝑓′(𝜍, 𝐴̅))
2
] + 𝑀2(1 − 𝑓′(𝜍, 𝐴̅)) = 0 

𝑓′′′(𝜍, 𝐵̅) + 𝑓′(𝜍, 𝐵̅)𝑓(𝜍, 𝐵̅) +𝛽𝐵̅ [1 − (𝑓′(𝜍, 𝐵̅))
2
] + 𝑀2(1 − 𝑓′(𝜍, 𝐵̅)) = 0       (5.2) 

𝑓′′′(𝜍, Γ̅) + 𝑓′(𝜍, Γ̅)𝑓(𝜍, Γ̅)  +𝛽Γ̅ [1 − (𝑓′(𝜍, Γ̅))
2
] + 𝑀2(1 − 𝑓′(𝜍, Γ̅)) = 0  

With transformed boundary condition 

𝑓(𝜍, 𝐴̅) =  0̅,  𝑓′(𝜍, 𝐴̅) =  0̅     at 𝜍 = 0   𝑓′(𝜍, 𝐴̅) ⟶ 1    as 𝜍 ⟶ ∞      

𝑓(𝜍, 𝐵̅) =  0̅, 𝑓′(𝜍, 𝐵̅) =  0̅   at 𝜍 = 0   𝑓′(𝜍, 𝐵̅) ⟶ 1    as 𝜍 ⟶ ∞          (5.3)                                                            

𝑓(𝜍, Γ̅) =  0̅,  𝑓′(𝜍, Γ̅) =  0̅    at 𝜍 = 0   𝑓′(𝜍, Γ̅) ⟶ 1    as 𝜍 ⟶ ∞                                                    

The neutrosophic velocity profile is defined as 𝑓′(𝜍, 𝐴̅) =  [𝑓′(𝜍, 𝐴̅), 𝑓′(𝜍, 𝐴̅)], 0 ≤ 𝐴̅ ≤ 1. The term 𝑓′(𝜍, 𝐴̅) 

represents the lower bound and 𝑓′(𝜍, 𝐴̅) represents the upper bound of the neutrosophic velocity, respectively for 𝐴̅(truth). In 

the same way, 𝑓′(𝜍, 𝐵̅) = [𝑓′(𝜍, 𝐵̅), 𝑓′(𝜍, 𝐵̅)], 0 ≤ 𝐵̅ ≤ 1, 𝑓′(𝜍, Γ̅) = [𝑓′(𝜍, Γ̅), 𝑓′(𝜍, Γ̅)], 0 ≤ Γ̅ ≤ 1 for 𝐵̅(indeterminacy) and 

Γ̅(falsity), respectively and 0− ≤ 𝐴̅ + 𝐵̅ + Γ̅ ≤ 3+ . 

The Triangular neutrosophic number and Trapezoidal neutrosophic number are transformed using (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 is 

shown in Table 1 for wedge angle parameter 𝛽. 

Table 1. Parametric form of Triangular neutrosophic number and trapezoidal neutrosophic number for various . 
 Crisp value Neutrosophic 

number 

Alpha cut approach Beta cut approach Gamma cut 

approach 

Triangular 

Neutrosophic 

number 

[0.01-0.5] [0.1, 0.3, 0.5; 0.5, 

0.7, 0.3] 
[(0.1+0.2 𝐴̅)0.5, 

(0.5-0.2𝐴̅)0.5] 

[(0.3-0.2𝐵̅)0.7, 

(0.3+0.2𝐵̅)0.7] 

[(0.3-0.2Γ̅)0.3, 

(0.3+0.2Γ̅)0.3] 

Trapezoidal 

neutrosophic 

number 

[0.01-0.5] [0.1, 0.3, 0.5, 

0.7;0.5,0.7,0.3] 
[(0.1+0.2𝐴̅)0.5, 

(0.7-0.2𝐴̅)0.5] 

[(0.3-0.2𝐵̅)0.7, 

(0.5+0.2𝐵̅)0.7] 

[(0.3-0.2Γ̅)0.3, 

(0.5+0.2Γ̅)0.3] 

In the same way, the Triangular neutrosophic number and Trapezoidal neutrosophic number are transformed using (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 
is shown in Table 2 for no slip conditions. 

Table 2. Parametric form of triangular neutrosophic number and trapezoidal neutrosophic number for no slip conditions. 
 No slip 

conditions 

Crisp 

value 

Neutrosophic 

number 

Alpha cut approach Beta cut approach Gamma cut 

approach 

Triangular 

Neutrosophic 

number 

𝑓(𝜍) =  0̅ [0.01-

0.5] 

[0.1, 0.3, 0.5; 

0.5, 0.7, 0.3] 
[(0.1+0.2𝐴̅)0.5, 

(0.5-0.2𝐴̅)0.5] 

[(0.3-0.2𝐵̅)0.7, 

(0.3+0.2𝐵̅)0.7] 

[(0.3-0.2Γ̅))0.3, 

(0.3+0.2Γ̅))0.3] 

𝑓′(𝜍) =  0̅ [0.01-

0.5] 

[0.2, 0.3, 0.6; 

0.7, 0.3, 0.5] 
[(0.2+0.1𝐴̅)0.7, 

(0.6-0.3𝐴̅)0.7] 

[(0.3-0.1𝐵̅)0.3, 

(0.3+0.3𝐵̅)0.3] 

[(0.3-0.1Γ̅))0.5, 

(0.3+0.3Γ̅))0.5] 

Trapezoidal 

neutrosophic 

number 

𝑓(𝜍) =  0̅ [0.01-

0.5] 

[0.1,0.3,0.5, 

0.7;0.2,0.4,0.6] 
[(0.1+0.2𝐴̅)0.2, 

(0.7-0.2𝐴̅)0.2] 

[(0.3-0.2𝐵̅)0.4, 

(0.5+0.2𝐵̅)0.4] 

[(0.3-0.2Γ̅))0.6, 

(0.5+0.2Γ̅))0.6] 

𝑓′(𝜍) =  0̅ [0.01-

0.5] 

[0.1,0.2,0.3, 

0.4;0.5,0.3,0.7] 
[(0.1+0.1𝐴̅)0.5, 

(0.4-0.1𝐴̅)0.5] 

[(0.2-0.1𝐵̅)0.3, 

(0.3+0.1𝐵̅)0.3] 

[(0.2-0.1Γ̅))0.7, 

(0.3+0.1Γ̅))0.7] 

5. Validation  

To validate the correctness of the BVP4C approach, the results of 𝑓′′(0) was compared to with the existing results. 

Table 3: Comparison of  𝑓′′(0) for various  (M = 0) 

 Zhang et al. 

(2009) 

Salama 

(2004) 

Present 

(BVP4C approach) 

-0.15 0.216362 0.216362 0.210243 

-0.1 0.319270 0.319270 0.328642 

0 0.469600 0.469600 0.469230 

0.5 0.927680 0.927680 0.925463 

1 1.232587 1.232588 1.329624 
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6. Result and discussion 

The neutrosophic analysis of boundary layer equation is carried out in this section. The uncertainty of wedge angle 

parameter 𝛽 and no slip conditions are considered as Triangular and Trapezoidal Neutrosophic numbers. The governing 

equation are transformed into neutrosophic differential equations (NDE’s), numerically solved using BVP4C approach.  

6.1 Profile graphs by BVP4C approach 

 
Figure 4. Behavior of 𝑓′(𝜍) against 𝛽 

Figure 4 demonstrates the velocity distribution against 𝛽 over the boundary layer. From the figure, it is observed that 

the wedge angle parameter 𝛽 controls the boundary layer characteristics. An observation from the figure reveals the fact that 

velocity at the boundaries increases with the rise in 𝛽.  

  
Figure 5(a). Behavior of 𝑓′(𝜍) against M (𝛽 < 0) 

 
Figure 5(b). Behavior of 𝑓′(𝜍) against M (𝛽 = 0) 
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Figure 5(c ). Behavior of 𝑓′(𝜍) against M (𝛽 > 0) 

The behavior of Magnetic parameter on velocity at the boundary layer is publicized in Figure 5(a) – (c). Figure 5(a) 

demonstrates the decelerating velocity profile against Magnetic parameter. Figure 5(b) reveals the impression of magnetic 

parameter over a flat plate. Whilst Fig 5(c) explores the impact of Magnetic parameter on the velocity profile. From the above 

figures, it is observed that increment in Magnetic parameter boosts the velocity profile at the boundary.  

6.2 Neutrosophic Analysis using BVP4C approach 

Case 1: Wedge angle parameter 𝛽 as neutrosophic number 

  The wedge angle parameter 𝛽 is considered as triangular neutrosophic number [0.1, 0.3, 0.5; 0.5, 0.7, 0.3] and 

trapezoidal neutrosophic neutrosophic number [0.1, 0.3, 0.5, 0.7; 0.5, 0.7, 0.3] in the boundary layer equation. 

 

 
Figure 6(a). Triangular Neutrosophic velocity for truth 

function 𝐴̅ 

Figure 6(b). Trapezoidal Neutrosophic velocity for truth 

function 𝐴̅ 

Figure 6(a) and 6(b) presents the neutrosophic velocity profile 𝑓′(𝜍, 𝐴̅)  corresponding to the truth component of 

neutrosophic number. From the figure, we can understand that, 𝑓′(𝜍, 𝐴̅) is exactly increasing and 𝑓′(𝜍, 𝐴̅) is exactly decreasing 

for all 𝐴̅𝜖[0,1] and 𝑓′(𝜍, 𝐴̅) ≤ 𝑓′(𝜍, 𝐴̅) for both triangular and trapezoidal neutrosophic number.  
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Figure 7(a). Triangular Neutrosophic velocity for 

indeterministic function 𝐵̅ 

Figure 7(b). Trapezoidal Neutrosophic velocity for 

indeterministic function 𝐵̅ 

Figure 7(a) and 7(b) presents the neutrosophic velocity profile 𝑓′(𝜍, 𝐵̅)  corresponding to the indeterminacy 

component of neutrosophic number. From the figure, we can conclude that, 𝑓′(𝜍, 𝐵̅) is strictly decreasing and 𝑓′(𝜍, 𝐵̅) is strictly 

increasing for all 𝐵̅𝜖[0,1] and 𝑓′(𝜍, 𝐵̅) ≤ 𝑓′(𝜍, 𝐵̅) for both triangular and trapezoidal neutrosophic number.  

  

 

 

 
Figure 8(a). Triangular Neutrosophic velocity for falsity 

function Γ̅ 

Figure 8(b). Trapezoidal Neutrosophic velocity for falsity 

function Γ̅ 

Figure 8(a) and 8(b) presents the neutrosophic velocity profile 𝑓′(𝜍, Γ̅)  associated with falsity. It depicts that, 𝑓′(𝜍, Γ̅) 

is strictly decreasing and 𝑓′(𝜍, Γ̅) is strictly increasing for all Γ̅𝜖[0,1] and 𝑓′(𝜍, Γ̅) ≤ 𝑓′(𝜍, Γ̅) for both triangular and trapezoidal 

neutrosophic number.  Hence we can conclude that, the solution of  (3.6), 𝑓′(𝜍, A̅, B̅, Γ̅) is a strong neutrosophic solution.  

Case 2: No slip condition as neutrosophic number 

The no slip condition 𝑓(0) is considered as triangular neutrosophic number [0.1, 0.3, 0.5; 0.5, 0.7, 0.3] and trapezoidal 

neutrosophic neutrosophic number [0.1,0.3,0.5, 0.7;0.2,0.4,0.6] in the boundary layer equation. 
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Figure 9(a). Triangular Neutrosophic velocity for 𝑓(0) Figure 9(b). Trapezoidal Neutrosophic velocity for 𝑓(0) 

From Figures 9(a) and 9(b), we see that, 𝑓′(𝜍, 𝐴̅) is increasing and 𝑓′(𝜍, 𝐴̅) is strictly decreasing for all 𝐴̅𝜖[0,1] , 

𝑓′(𝜍, 𝐴̅) ≤ 𝑓′(𝜍, 𝐴̅) for both triangular and trapezoidal neutrosophic number.  

 
 

Figure 10(a). Triangular Neutrosophic velocity for 𝑓(0) Figure 10(b). Trapezoidal Neutrosophic velocity for 𝑓(0) 

From Figures 10(a) and 10(b), it express that, 𝑓′(𝜍, 𝐵̅) is decreasing and 𝑓′(𝜍, 𝐵̅) is strictly increasing for all 𝐵̅𝜖[0,1] 

, 𝑓′(𝜍, 𝐵̅) ≤ 𝑓′(𝜍, 𝐵̅) for both triangular and trapezoidal neutrosophic number.  

 

 

Figure 11(a). Triangular Neutrosophic velocity for 𝑓(0) Figure 11(b). Trapezoidal Neutrosophic velocity for 𝑓(0) 
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From Figures 11(a) and 11(b), we see that, 𝑓′(𝜍, Γ̅) decreases and 𝑓′(𝜍, Γ̅) strictly increases for  all Γ̅𝜖[0,1] , 𝑓′(𝜍, Γ̅) ≤

𝑓′(𝜍, Γ̅) for both triangular and trapezoidal neutrosophic number. From the above discussion, we can conclude that, the solution 

of (3.6), 𝑓′(𝜍, A̅, B̅, Γ̅) is a strong neutrosophic solution.  

The no slip condition 𝑓′(0) is considered as triangular neutrosophic number [0.2, 0.3, 0.6; 0.7, 0.3, 0.5] and trapezoidal 

neutrosophic neutrosophic number [0.1,0.2,0.3, 0.4;0.5,0.3,0.7]in the boundary layer equation. 

 
 

Figure 12(a). Triangular Neutrosophic velocity for 𝑓′(0) Figure 12(b). Trapezoidal Neutrosophic velocity for 𝑓′(0) 

From Figures 12(a) and 12(b), we see that, 𝑓′(𝜍, A̅) increases and 𝑓′(𝜍, A̅) strictly decreases for  all A̅𝜖[0,1] , 𝑓′(𝜍, A̅) ≤

𝑓′(𝜍, A̅) for both triangular and trapezoidal neutrosophic number.  

 
 

Figure 13(a). Triangular Neutrosophic velocity for 𝑓′(0) Figure 13(b). Trapezoidal Neutrosophic velocity for 𝑓′(0) 

From Figures 13(a) and 13(b), we see that, 𝑓′(𝜍, B̅) decreases and 𝑓′(𝜍, B̅) strictly increases for  all B̅𝜖[0,1] , 𝑓′(𝜍, B̅) ≤

𝑓′(𝜍, B̅) for both triangular and trapezoidal neutrosophic number.  

 
 

Figure 14(a). Triangular Neutrosophic velocity for 𝑓′(0) 
 

 

Figure 14(b). Trapezoidal Neutrosophic velocity for 𝑓′(0) 
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From Figures 14(a) and 14(b), we see that, 𝑓′(𝜍, Γ̅) decreases and 𝑓′(𝜍, Γ̅) strictly increases for  all Γ̅𝜖[0,1] , 𝑓′(𝜍, Γ̅) ≤

𝑓′(𝜍, Γ̅) for both triangular and trapezoidal neutrosophic number. Hence we can conclude that, the solution of  (3.6), 

𝑓′(𝜍, A̅, B̅, Γ̅) is a strong neutrosophic solution.  

Conclusion 

In recent years, mathematical modeling that incorporates uncertainty or vagueness has found significant applications 

across various industries and engineering fields. In this research article, the first-order Differential equation solution is obtained 

in neutrosophic background. The (𝐴̅, 𝐵̅, Γ̅)𝑐𝑢𝑡 neutrosophic set and the strong and weak solutions of neutrosophic DE concepts 

are also applied for the DE with a 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 and a linear generalized 𝑇𝑟𝑎𝑝𝑁𝑛𝑢𝑚𝑏𝑒𝑟 as initial conditions. The problem 

is solves using BVP4C approach. The key findings from the above study are 

 The velocity profile upsurges with increase in wedge angle parameter and Magnetic parameter. 

 The neutrosophic concept is applied to solve the boundary layer equation whose solution follows the 

conditions of strong neutrosophic solution. 
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