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Abstract: 

We introduce a novel framework for holistic 3D scene Reconstruction from a single RGB image, aiming to jointly infer object 

geometry, object poses, and global scene layout. Due to the severe ambiguity of monocular 3D perception, prior approaches 

often struggle to accurately recover object shapes and spatial layouts, particularly in cluttered environments with heavy inter-

object occlusions. To address these challenges, we leverage recent advances in deep learning representations. Specifically, we 

design an image-driven, locally structured graphical network to enhance object-level shape reconstruction, and further improve 

3D object pose estimation and scene layout reasoning through a new implicit scene graph neural network that effectively 

aggregates local object features. Comprehensive experiments on different datasets such as SUN RGB-D and Pix3D dataset 

demonstrate that our approach consistently surpasses state-of-the-art methods in object shape reconstruction, scene layout 

estimation, and 3D object detection. 
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1. Introduction 

Researchers are increasingly interested in reconstructing 3D sceneries from 2D photographs. This is due to increased 

opportunities for 3D reasoning from photos made possible by the recent availability of extensive catalogues of 3D models. 

Three-dimensional (3D) reconstruction has become a fundamental research topic in computer vision, playing an essential role 

across numerous application domains such as autonomous driving [1,2], underwater exploration [3,4], medical diagnostics 

[5,6], precision agriculture [7,8], civil infrastructure monitoring [9,10], and robotic systems [11,12]. These diverse application 

settings range from well-controlled indoor scenes to highly complex environments like underwater imagery, which present 

specific challenges including light refraction, water turbidity, and low-texture regions. Such difficulties have motivated the 

development of advanced preprocessing strategies, including color normalization [13] and image denoising techniques [14], to 

improve reconstruction accuracy. Better decision-making, spatial comprehension, and interaction with real-world situations are 

made possible by the ability to rebuild precise three-dimensional representations from images or video sequences. In 

comparison to conventional approaches, deep learning techniques have recently produced significant breakthroughs in this field 

[15,16], allowing for more reliable, accurate, and computationally efficient solutions. However, the quick development and 

variety of deep learning-based techniques have produced inconsistent performance and applicability outcomes, igniting 

continuous discussions over the optimal methodology, measurements, and real-world applications. While techniques utilizing 

transformers [18], hybrid architectures [19], and convolutional neural networks (CNNs) [17] show great potential, there are 

differences in their effectiveness, computational cost, and context-specific flexibility. These differing viewpoints highlight the 

necessity of methodical assessments and comparative studies of current approaches. So, in this paper we propose a novel 3D 

reconstruction technique using deep learning techniques. Our proposed pipeline takes a single image as input, estimates layout 

and object poses, then reconstructs the scene from SUN RGB-D dataset as shown in figure 1. 

 
Fig 1. 3D Reconstructed Image  

2. Related work: 

Several reconstruction algorithms are developed for scenes which are broadly classifies as follows: 

(i) Single Image Scene Reconstruction: As a highly ill posed problem, single image scene reconstruction sets a high bar for 

learning-based algorithms, especially in a cluttered scene with heavy occlusion. The problem can be divided into layout 

estimation, object detection and pose estimation, and 3D object reconstruction. A simple version of the first problem is to 

simplify the room layout as a bounding box [22]. To detect objects and estimate poses in 3D space, recent works [23] try to 
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infer 3D bounding boxes from 2D detection by exploiting relationships among objects with a graph or physical simulation. At 

the same time, other works further extend the idea to align a CAD model with similar style to each detected object. Total3D 

[21] is proposed as an end-to-end solution to jointly estimate the layout box and object poses while reconstructing each object 

from the detection and utilizing the reconstruction to supervise the pose estimation learning. 

(ii) Shape Representation: In the field of computer graphics, traditional shape representation methods include mesh, voxel, 

and point cloud. Some of the learning-based works try to encode the shape prior into a feature vector but stick to the traditional 

representations by decoding the vector into mesh [24], voxel [25] or point cloud [26]. Others try to learn structured 

representations which decompose the shape into simple shapes. Recently, implicit surface function [21] has been widely used 

as a new representation method to overcome the disadvantages of traditional methods (i.e. unfriendly data structure to neural 

network of mesh and point cloud, low resolution and large memory consumption of voxel). Most recent works try to combine 

the structured and implicit representation which provides a physically meaningful feature vector while introducing significant 

improvement on the details of the decoded shape. 

(iii) Graph Convolutional Networks: Graph Convolutional Networks (GCN) have been widely used to learn from graph-

structured data. Inspired by convolutional neural networks, convolutional operation has been introduced to graph either on 

spectral domain [27] or non-spectral domain which performs convolution with a message passing neural network to gather 

information from the neighboring nodes. Attention mechanism has also been introduced to GCN and has been proved to be 

efficient on tasks like node classification, scene graph generation and feature matching. Recently, GCN has been even used on 

super-resolution which is usually the territory of CNN. In the 3D world which interests us most, GCN has been used on 

classification and segmentation on point cloud, which is usually an enemy representation to traditional neural networks. The 

most related application scenario of GCN with us is 3D object detection on points cloud. Recent work shows the ability of 

GCN to predict relationship or 3D object detections [28] from point cloud data. 

3. Proposed Method: 

The proposed system consists of two stages, i.e., the initial estimation stage, and the refinement stage. In the initial estimation 

stage, a 2D detector is first adopted to extract the 2D bounding box from the input image, followed by an Object Detection 

Network (ODN) to recover the object poses as 3D bounding boxes and a new Local Implicit Embedding Network (LIEN) to 

extract the implicit local shape information from the image directly, which can further be decoded to infer 3D geometry. The 

input image is also fed into a Layout 

Estimation Network (LEN) to produce a 3D layout bounding box and relative camera pose. In the refinement stage, a novel 

Scene Graph Convolutional Network (SGCN) is designed to refine the initial predictions via the scene context information. 

The proposed network is as shown in figure 2. 

3.1 Implementation: 

We use the outputs of the 2D detector from Total3D [21] as the input of our model. We also adopted the same structure of 

ODN and LEN from Total3D. LIEN is trained with LDIF decoder on Pix3D with watertight mesh, using Adam optimizer with 

a batch size of 24 and learning rate decaying from 2e-4 (scaled by 0.5 if the test loss stops decreasing for 50 epochs, 400 epochs 

in total) and evaluated on the original non-watertight mesh. SGCN is trained on SUNRGB-D, using Adam optimizer with a 

batch size of 2 and learning rate decaying from 1e-4 (scaled by 0.5 every 5 epochs after epoch 18, 30 epochs in total). When 

training SGCN individually, we use Lj without Lphy, and put it into the full model with pre-trained weights of other modules. In 

joint training, we adopt the observation from that objects reconstruction depends on clean mesh for supervision, to fix the 

weights of LIEN and LDIF decoder. 

 

 
Fig  2. Proposed SGCN 
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3.2 Dataset: 

We use two datasets to train each module individually and jointly. We use two datasets for training and evaluation. 1) Pix3D 

dataset [20] is presented as a benchmark for shape-related tasks including reconstruction, providing 9 categories of 395 furniture 

models and 10,069 images with precise alignment. We use the mesh fusion pipeline from Occupancy Network to get watertight 

meshes for LIEN training and evaluate LIEN on original meshes. 2) SUN RGB-D dataset [19] contains 10K RGB-D indoor 

images captured by four different sensors and is densely annotated with 2D segmentation, semantic labels, 3D room layout, 

and 3D bounding boxes with object orientations. Follow Total3D [21], we use the train/test split from [14] on the Pix3D dataset 

and the official train/test split on the SUN RGB-D dataset. The object labels are mapped from NYU-37 to Pix3D as presented 

by [21]. 

The SUN RGB-D dataset contains 10,335 indoor scene images, 3D camera poses annotations, 3D layout bounding boxes, 

semantic segmentation, and labels. From this dataset, 5050 images were used for testing and 5280 for training. The Pix3D 

dataset comprises 10,069 real-world images and 395 indoor object models under 9categories. These images and shapes are 

annotated using pixel-level 2D–3D alignment. From this dataset, 7556 images were used for training and 2513 for testing. To 

ensure a fair comparison, we used the same train/test splits as [18]. Figure 3 shows Sample images and shapes in Pix3D dataset. 

3.3 Metrics: 

We adopt the same evaluation metrics with [21], including average 3D Intersection over Union (IoU) for layout estimation, 

mean absolute error for camera pose, average precision (AP) for object detection, and chamfer distance for single-object mesh 

generation from single image. 

 
Fig  3. Sample images and shapes in Pix3D dataset 

4. Experimental Results: 

The proposed SGCN is evaluated using the above datasets. The mean value is compared with latest methods as given in table 

1. Qualitative comparison on object detection and scene reconstruction. We compare object detection results with Total3D [21] 

and ground truth in both oblique view and camera view. The results show that our method gives more accurate bounding box 

estimation and with less intersection. We compare scene reconstruction results with Total3D in camera view and observe more 

reasonable object poses as shown in figure 4. 

Table1. 3D Object Detection Comparison 

Method Bed Chair Sofa Table Desk mAP 

3DGP[29] 5.62 2.31 3.24 1.23 - - 

HoPR[30] 58.29 13.6 28.3 12.1 4.79 14.47 

Coop[31] 57.51 15.21 36.7 31.6 19.9 21.7 

Total[21] 60.65 17.55 44.9 36.48 27.9 26.38 

Proposed 

method 

88.3 34.8 68.6 57.8 52.1 44.3 
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Fig 4. 3D Scene Reconstruction with the proposed SGCN and comparison with state of art. 

 
Fig 5. More qualitative comparisons on object reconstruction. We compare with Total 3D[21]. First column is input, second is 

reconstructed image from Total 3D[21], and third is the proposed SGCN. 
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5. Conclusion: 

We presented a holistic scene understanding framework based on deep implicit representations. The proposed method jointly 

reconstructs accurate 3D object geometry and models scene-level context through a graph convolutional network and a physics-

aware violation loss. By integrating object-level and relational constraints, our approach produces more reliable scene layouts 

and object configurations. Extensive experimental results demonstrate consistent improvements over existing methods across 

multiple scene understanding tasks. Future work will explore incorporating object functionality and affordance cues to further 

enhance 3D scene reasoning. 
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