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Highlights of the Study 
 Proposed a Hybrid CNN-GRU Model that integrates spatial feature extraction with temporal sequence learning for 

accurate load forecasting and real-time fault classification in decentralized nano-grid systems. 

 Achieved High Predictive Accuracy, with a load forecasting MAPE of just 3.14% and fault classification accuracy of 

96.94%, significantly outperforming traditional and deep learning baselines. 

 Enabled Real-Time Control with Low Latency, maintaining inference times under 15 ms and fault response actions 

within 500ms, ensuring suitability for edge deployment in resource-constrained environments. 

 Demonstrated Enhanced Energy Efficiency, improving utilization rates by up to 20% across diverse grid scenarios 

through intelligent, predictive load balancing and fault-tolerant decision-making. 

Abstract 
The increasing integration of renewable energy sources in decentralized nano-grid systems presents new challenges in 

maintaining load balance and ensuring fault resilience due to the intermittent and nonlinear nature of energy flows. In this 

paper, we introduce a hybrid CNN-GRU architecture integrated with AI that exploits the advantages of both Convolutional 

Neural Networks (CNNs) and Gated Recurrent Units (GRUs) in a time-sensitive energy management context within nano-grid 

environments. The model is trained on the room temperature in the earliest conversations, using high resolution time-series 

measurements obtained by smart meters and energy nodes, specifically the parameters of voltage, current, frequency, and state-

of-charge ( SoC ). The proposed model outperformed conventional methods like ARIMA, Random Forest and LSTM, 

standalone CNN and GRU in terms of accuracy and Mean Absolute Percentage Error of forecasting load (3.14%) and fault 

classification (96.94%) having conducted the large-scale experimentation. In addition, the model attained low inference latency 

of less than 15 milliseconds and has a fault response time of less than 500 milliseconds, which confirmed that it was applicable 

in edge deployment. Experimentations in the real world demonstrated an energy consumption reduction of up to 20% in 

different operating conditions related to peak demand, renewable surplus, and grid failure. In our research, we show that by 

integrating deep learning with edge-intelligent control it is possible to greatly increase the resilience, adaptability and 

sustainability of the next generation decentralized power systems. CNN-GRU can be a good use case as the prediction engine 

in the sense of short-term load balance and real-time fault recovery, and the model may be useful in developing smart energy 

infrastructure. 

Keywords-Nano-Grid, Load Forecasting, Fault Detection, CNN-GRU, Hybrid Deep Learning, Energy Efficiency, 

Decentralized Grid, Predictive Control. 

1. Introduction 
Due to the increased worldwide focus on eco-friendly power consumption and the decentralization of electrification, nano-

grids have become the potential way to accommodate renewable energy supply at the community or building scale. A nano-

grid is a localized, small-scale grid system that can be operated in both a grid connected and an islanded mode, and usually 

consists of renewable energy sources (e.g. solar PVs, wind turbines), energy storage systems (ESS), smart loads, and 

microcontrollers [1] [2]. Such systems provide greater flexibility that enables their own power management, which improves 

the energy accessibility, as well as reliability and the sustainability of the environment. Nevertheless, in as much as nano-grid 

systems have their virtues, they have come at complex operational problems. The large storage inconsistency and load-

generation imbalance caused by the intermittent generation of the renewables results in instability of voltage/frequency [3] [4]. 

Furthermore, energy resources are limited, and centralised control is not an option, which means that it is not possible to detect 

faults or optimise energy in real time. This demands smart models that can predict the short-term energy demand, detect fault 

patterns in advance and play corrective measures in real-time, thus serving the purpose of sustainable power delivery without 

any breaks [5] [6].Figure 1 illustrates key components involved in load balancing and fault-tolerant control within decentralized 

nano-grid systems. 
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Figure 1. Load Balancing and Fault Control 

Traditionally, statistical results and rule-based technology had been used in energy forecasting and fault detection in the grid 

systems. Load prediction has considerably been done using time-series forecasting methods like Autoregressive Integrated 

Moving Average (ARIMA), Seasonal ARIMA (SARIMA) and Holt-Winters models. Although the models can operate under 

linear and stationary assumptions, it is difficult to find those that can model the nonlinearities and sharp changes that a nano-

grid usually displays [7] [8]. The modeling of temporal sequences has become a popular subject of interest of deep learning 

models, especially Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs). LSTM has proved to be efficient 

when it comes to load predictions but the GRUs provide a simpler method with a similar level of accuracy and with fewer 

demanding calculations.  

A number of hybrid models have been suggested including LSTM-CNN, CNN-LSTM, and DenseNet-RNN hybrids. These 

hybrids advance the performance of single architectures, being however, complex, computationally costly, and sometimes 

uninterpretable. Also, the real-time forecast of the load and subsequent fault detection have often been considered separately 

with few works that combine the two in an integrated solution that can make the decisions and control simultaneously [9] [10]. 

In order to face the above CHs, this work presents a new hybrid AI model, namely, the AI-Enhanced Hybrid CNN-GRU Model. 

The model is specifically made to be used in the real-time, edge-limited nano-grid applications, where predictions made need 

to be quick and precise. CNN component extracts the spatial interdependencies in the sensor features, including voltage, current 

and frequency whereas GRU component learns both long and short-term temporal dependencies in energy sequences. The 

integration enables the model to predict load highly accurately and identifies fault events in very less time. 

1.1 Research Motivation 
The proposed research is driven by the fact that improving the stability, and reliability of the decentralized nano-grid systems 

in crucial medical environments like the rural clinics and emergency facilities is a rather timely need. These lookout settings 

make use of more off grid renewable energy which is not only intermittent but also unreliable. A model based on AI that can 

support real-time load prediction and fast recovery of fault is necessary to combat life-threatening breakdowns of the essential 

medical equipment. The present study fulfils that requirement by employing a hybrid deep learning based control technique. 

1.2 Significance of the Study 
The study has value to the development of the decentralized energy systems due to the rapid changes toward renewable energy 

across the globe. As more homes and businesses in smart cities, rural electrification, and industrial microgrids become nano-

grid systems, they have to be smarter and more resilient. The study proposes a hybrid framework of CNN-GRU, which 

integrates predictive load balancing and fault detection by empowering them to react autonomously in real time. Its low-

footprint in computing resources and scalability capabilities make the model fit to be deployed in the edge and pave the way to 

the next-generation smart grids, EV infrastructure, and disaster-resilient energy networks that can provide sustainable as well 

as self-controlled power systems. 

1.3 Problem Statement 
Decentralized nano-grid systems experience various issues, which act against the efficiency of operation. The volatile nature 

of energy generators such as solar and wind energy makes them unpredictable, therefore, leading to load-generation 

mismatches. The traditional models cannot capture spatial-temporal dependency of real-time data and forecast poor and 

inefficient energy dispatch. Moreover, overlapping failure signatures make fault identification hard because conventional 

systems fail to classify them into specific categories. The current connection and practice to address the issues of load 

forecasting and fault detection are separate. This paper fills those gaps by suggesting a coherent AI-based CNN-GRU solution 

that will simultaneously forecast, fault categorization, and provide real-time control in edge-limited nano-grid settings. 
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1.4 Recent Innovations and Challenges 
Latest advances in intelligent energy systems involve LSTM-based forecasting, federation learning, and convolutional fault 

detection architectures. Equipped with edge-AI and neural networks that can now be deployed on microcontrollers, 

decentralized control is now supported. But there are still major issues such that deep learning models tend to be combatively 

opaque, making them difficult to trust in safety-critical applications, and hybrid models have high computational overheads, 

and therefore cannot always be run on an edge device. Also, spatial and temporal learning are not processed efficiently when 

they are separated in treatment. These problems become worse as sensors become more complicated and require quick reaction. 

The research tackles them using an a priori unified and lightweight structure, essentially CNN-GRU, which is able to infer the 

resilience of nano-grid in real-time back in spatiotemporal terms. 

1.5 Key Contribution of the study 
 Development of a Hybrid CNN-GRU Architecture: Proposed a new framework in deep learning which integrates 

Convolutional Neural Networks (CNNs) to learn spatial features and Gated Recurrent Units (GRU) to learn the 

temporal sequences to ensure strong spatiotemporal learning in switching energy data on a nano-grid. 

 Unified Framework for Load Forecasting and Fault Classification: Developed a more integrated model that could 

carry out both the predictive load balancing and the real-time fault classification in a concise deep learning pipeline. 

 Edge-Compatible Model Design: Prepared the proposed architecture to deploy in edge computing by processing low 

computational overhead and low memory usage and fast inference of an embedded system. 

 Incorporation of Real-Time Control Logic: Combined AI model with real time load dispatch logic, real time fault 

mitigation logic, which caused the automatic user controlled decisions and automatic execution of control solutions 

without any external human intervention. 

 Temporal Windowing and Feature Engineering Strategy: Used a regularized temporal windowing strategy and 

computed higher order energy indicators (e.g., the index of power deviation, frequency drift, net load slope) to endow 

model input with indicators of prediction. 

1.6 Rest of Section of the Study 
The structure of this study is organized to comprehensively address the research objectives. Section 2 provides an in-depth review 

of related studies concerning load forecasting, fault detection, and AI integration in decentralized energy systems, identifying 

the strengths and limitations of existing models. Section 3 details the proposed hybrid CNN-GRU methodology, including data 

acquisition, preprocessing, model architecture, and real-time deployment mechanisms. Section 4 describes the experimental 

results and discussion, highlighting model performance, energy efficiency gains, and system responsiveness across scenarios. 

Finally, Section 5 presents the conclusion and outlines future research directions to enhance scalability, security, and adaptive 

control in nano-grid applications. 

2. Related Works 
Federated Secure Dynamic Optimization Framework (FSDOF), a new method was proposed to strengthen energy management 

as well as resilience of smart nano grids. FSDOF provides the solution to the real-time flexibility, energy wastage, computation 

delay, and cybersecurity risks embedded in Digital Twin (DT) control and Multiagent Reinforcement Learning (MARL). 

Among them, there is the Federated Deep Model Predictive Control (FD-MPC), SecureGraph-FedNet (SG-FedNet), and the 

Dynamic Stochastic Neuro-Evolution Optimizer (DSNEO). DC voltage stabilization of the system was gained very quickly at 

80V in less than 0.5 sec with a low Bit Error Rate (BER) at 0.012[11]. SG-FedNet that relies on Autoencoders and Graph 

Neural Networks had a security rate of 0.99. 

The paper contains a thorough overview of hybrid nanogrid energy management systems, the discussion is conducted on the 

application of the said system in embedded systems that have low amount of energy reserves and extended periods of isolation 

concerning external power utilities. Whereas energy management is a well-developed area under buildings, EVs, and naval 

transport, embedded nanogrids have specific limitations poorly examined[12]. The paper contrasts hybrid nanogrids and 

microgrids, and they all elaborate on the components, type of operation, types of optimization and practical applications. It also 

points out some major hurdle and where the future research and development may look to the presence of hybrid nano grid in 

progressive aspect of energy efficiency, reduction of carbon footprint as well as reliable power and hence essentiality in next 

gen embedded energy solutions. 

Microgrids have become a trend in distribution of reliable and sustainable energy, and they are affected by regulatory and 

market impediments in their usage. The smaller scale systems or nanogrid have additional challenges like high capital 

expenditure, which has to match locally generated energy demands. This paper presents a model of economic feasibility 

analysis that would be implemented in a nanogrid project that is being developed in Brazil, specifically to park electric 

vehicles[13]. Monte Carlo simulations and the method of open DSS system operation are included in the model in order to 

perform uncertainty analysis. It also analyses net-metering energy trades and examines the effects of policy incentives on 

economic viability, providing an insight into the scaling of nanogrid use in emerging energy markets. 

Increasing sophistication of contemporary renewable energy and fuel systems has prompted both industrial and academic 
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innovation. These need complex architectures, testing and control strategy to manage. In this work, a new multi-agent AI-

driven smart control AI is suggested to maximize the utilization of power in buildings powered by renewable energy[14]. The 

system allows an efficient use of energy by means of a hierarchical network of collaborating agents, as well as improving the 

reliability. It simulates interdecorating smart nano grids which are solar and wind powered and they include the tariff monitoring 

and smart power flow control.  

The dynamics in energy demand and expanding cyber threat are the significant challenges that can affect the stability and 

efficiency of smart nano grids. This paper proposes one of the new methods named Federated Reinforced LSTM-Crayfish 

Whale Optimization Detection (FRLC-WOD) to overcome such problems. The framework entails the integration of two major 

aspects: RL-LSTM-CAO laying emphasis on the implementation of Bi-directional LSTM to predict adequately, reinforcement 

learning to dynamically distribute power, and Crayfish Optimization to manage energy; and FG-WOA-ID, which merges 

federated learning, Graph Neural Network, and Whale Optimization to perform advanced intrusion detection[15]. According 

to the experimental level, there are vast enhancements, such as the grid stability of 95%, energy efficiency of 92%, and cyber 

threat resistance of 95%, over the current models such as EMS GWO-OSA, RNN and MPPT. 

In the presented article, a new control scheme of frequency regulation of a fuel cell-powered nano grid is suggested; this scheme 

combines two 2-degree-of-freedom PD (2PD) schemes and two PID schemes in unified control structures[16]. The controller 

parameters are optimally tuned with the help of different optimization techniques where the results have shown that particle 

swarm optimization (PSO) has better convergence compared to GTO, AVOA and GMO. In comparison, the design of PI, PID, 

2PI, and 2PID controllers is also made. Findings indicate that the 2PD-PID controller has the smallest settle and peak times, 

and by far improves the IAE and ISE by 86 to 98% and 83 to 97% respectively when load changes happen demonstrating its 

stability and effectiveness.The study introduces the best power management system of nanogrid energy trading by using the 

IoT technology to curb the constraints of traditional systems. The system with embedded RNN prediction module provides the 

distributers of energy with important predictions and has three optimization modules: minimizing grid power demanding, 

minimizing energy trading cost, and regulating energy storage system (ESS) power[17]. It is an Edge platform that includes 

sensors and an Edge device based on Raspberry Pi and operates in an IoT-orchestrated environment.  

A multi-objective optimal energy management (OEM) has been proposed to be used in grid-connected nanogrid (NG) systems 

that combine photovoltaic (PV) arrays and battery storage Device (BSD) systems. It aims at reducing costs of operation, and 

CO 2 emissions within 24-hour schedule. With a multi-objective optimization Algorithm (MOA)) a new equation using an 

Improved Pelican Optimization Algorithm (IPOA), taking into account Malaysian grid pricing, is constructed[18]. Three 

scenarios are performed with a varying grid exchange condition and PV capacity, which are used to test the algorithm. The 

performance of IPOA was high compared to the original POA, Bat Algorithm, and Improved Differential Evolution (IDE) 

concluding that it is efficient and effective based on simulation outcomes in that it could reduce up to 9.5% could be in cost 

and 23% in CO2.A pioneer wireless photovoltaic (PV) monitoring system is described based on low-cost equipment that has 

been optimised to operate in the rugged high-altitude environment of the Peruvian Altiplano that exhibits strong variations in 

irradiance[19]. The system is constructed by Arduino Nano and Raspberry Pi, which tests parameters in a real-time such as 

voltage, current, power, temperature, and irradiance of paramount magnitude to PV. In a 3 kW grid connected PV installation, 

it measured daily irradiance fluctuations exceeding 20%, with peak values approaching 1500 W/m 2, which resulted in this 

energy production swinging by 15%. Such variability makes the reliability of the system questionable; however, this factor 

demonstrates the prospects of the system in optimizing PV operation and alignment with DC nanogrids, either in remote energy-

insecure areas.The purpose of this paper is to examine the special nature and infrastructural requirements of Light Electric 

Vehicles (LEVs), which have already been identified as the means that can improve the sustainability of transportation. 

Approach to estimating the energy and power impact of LEV charges is tendered, noting that the demand is typically modest, 

but may be problematic to weak grid networks[20]. The research paper reviews a portable, autonomous (off-grid) photovoltaic 

(PV) power charging station (CS) invented at the University of Brescia that is well suited to remote- or non-consistent-demand 

locations. Also applied to Favignana Island of Sicily gave unsubstantial results of durable environmental benefits as well as 

economic feasibility where the daily usage is not more than 200 users per day. 

The paper is a proposal of capacity optimization of a hybrid energy storage system (HESS) to overcome the fluctuations of 

power connected to the grid in wind farms through a two-stage decomposition process. The k-means++ algorithm is then used 

to ensure that there is accurate clustering of the annual wind power data whose cluster validation is done through silhouette 

coefficient and Davies Bouldin Index. Standard daily profiles are chosen in accordance with the appearance of clusters and 

trends of fluctuation. ICEEMDAN is used to decompose these profiles in order to extract grid-connected and HESS power[21]. 

Next, IPOA-VMD is utilized to distribute power of HESS between lithium batteries and supercapacitors. In case studies, it is 

confirmed that this technique works best in smoothing power generation, enhancing the use of storage, and minimizing system 

expenses.The current paper recommends the implementation of an energy management solution in DC microgrids based on 

high penetration of renewable energy, a State flow controller designed in MATLAB/Simulink 2020b. In recent times, as 

international electricity demand is increasing, migration towards using renewables (solar, wind, biomass, tidal, and 

hydropower) has become inevitable in order to decrease fossil fuel dependency and subsequent greenhouse gas emissions[22]. 

The strategy is that of managing the variability of such sources efficiently to stabilize the grid. As it can be seen on the 

simulation results, the given algorithm shows that microgrid operation with the proposed algorithm will be reliable, effective, 
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it will help to balance the generation and load, and at the same time allow adjusting the control to be flexible. 

The paper proposes a solution that can be used to enhance the functionality of photovoltaic (PV) system efficiency in the 

presence of partial shading that usually results in several power surges that are unpredictably disadvantageous and make 

tracking of maximum power point (MPPT) more difficult. A reconfigurable 5 5 PV array with position square-based physical 

relocation approach is also proposed such that the global maximum power point (GMPP) can be tracked by simple Perturb and 

Observe (P\&O) algorithms in the vicinity of the open-circuit voltage (Voc)[23]. The model is also realised under four 

configurations of the shading pattern and is able to show better results than Dominance Square and TCT schemes in terms of 

fill factor and power loss mitigation. Tests on hardware and PSO confirm that the voltage and power oscillations are reduced, 

thus it can be used in residential applications and microgrids. 

The paper introduces an original voltage controlling strategy named as inverse maximum power point tracking (iMPPT) which 

tries to maximise the power supply voltage using absorbed power. iMPPT adjusts the input to a switched-mode power supply 

(SMPS) to minimize the input power with an input voltage controlled using a modified Perturb and Observe (P\&O) MPPT 

algorithm which is refined with an interfacing power electronics converter with automatic voltage regulation (AVR)[24]. By 

doing this, energy conversion efficiency is maximized and losses in the power stage lessened. The iMPPT was tested on an 800 

W synchronous buck converter, which showed a nearly 10% gain in efficiency with a similar 100 W of recovered power at an 

input voltage of 350 V, which is important in improving the overall system effectiveness. 

GMPPT algorithms are algorithms to track the global maximum power point of a photovoltaic (PV) array, under a partial shade 

and other less favourable operating conditions as well. Commercial methods GMPPT are based on either complicated 

optimization or AI algorithms, and have the side effect of phase shift, with voltage/current flickering at the power, slowing the 

ability to track the changes[25]. The current paper presents a low-complexity GMPPT scheme taking advantage of the dynamic 

reaction of the PV system. It has rapid tracking ability of the GMPP particularly high capacitance PV inverters and thus 

achieving rapid convergence without disturbances. The testing of the method on a rooftop and 2-kW grid-tied inverter array 

took approximately 1 second to determine the GMPP compared to longer than 95% when the particle swarm optimization 

algorithm as well as scanning methods are used. 

Table 1 Summary of Recent Methods in Smart Nano Grid and Renewable Energy Systems 

Reference Method Objective Limitation 

Sinneh et al. 

[11] 

FSDOF (FD-MPC, SG-FedNet, 

DSNEO) 

Enhance smart nano grid stability, 

security, and optimization 

Requires high computation for federated control 

and GNN integration 

Bitar et al. [12] 
Hybrid Nanogrid Energy 

Management Review 
Summarize use and limitations of 

hybrid nanogrids in embedded systems 
Limited focus on real-time implementation in 

isolated embedded systems 

Assis et al. [13] 

Economic Feasibility Model 

with Monte Carlo and 

OpenDSS 

Assess economic feasibility of EV 
nanogrid deployment in Brazil 

Dependent on policy incentives and location-
specific viability 

Renjith et al. 

[14] 

Multi-Agent AI Smart Control 

for Renewable Buildings 

Optimize power usage in smart 

buildings via agent-based AI 

Scalability and real-time agent cooperation 

remain challenging 

Sinneh et al. 
[15] 

FRLC-WOD (RL-LSTM-CAO 
+ FG-WOA-ID) 

Strengthen prediction, power control, 
and intrusion detection in nano grids 

Model complexity and integration cost may 
increase in real-world deployment 

Pachauri et al. 

[16] 

2PD-PID Controller with PSO 

Tuning 

Improve frequency regulation and 

control response in fuel cell nano grids 

Optimization depends on tuning method 

efficiency and load scenario changes 

Qayyum et al. 
[17] 

IoT-RNN Energy Trading 
System on Edge Platform 

Enable efficient IoT-based decentralized 
energy trading 

Requires consistent network and sensor 
reliability for distributed homes 

Jamal et al. [18] 
IPOA for Multi-Objective 

Energy Management 

Reduce cost and CO₂ emissions in PV-

battery hybrid systems 

Performance may vary with pricing fluctuations 

and PV availability 

Beltrán 
Castañón et al. 

[19] 

Arduino-Pi PV Monitoring in 

High Altitude 

Monitor PV performance in variable, 

high-altitude conditions 

Environmental ruggedness may affect hardware 

durability 

Favuzza et al. 

[20] 

Autonomous PV Charging 

Station for LEVs 

Support off-grid LEV charging with 

portable PV system 

Limited to low-demand, location-specific 

charging scenarios 

Zhang et al. 

[21] 

Two-Stage HESS Optimization 

with IPOA-VMD 

Balance power flow in wind-integrated 

hybrid storage systems 

Complexity in data clustering and power 

decomposition steps 

Ndeke et al. 

[22] 

Stateflow-Based Renewable 

Energy Management 

Stabilize microgrid using renewable 

forecasting and control automation 

Controller flexibility under sudden source failure 

not discussed 

Ram et al. [23] 
Reconfigurable PV Array with 

Improved P&O 

Improve MPPT performance under 

partial shading conditions 

Reconfiguration logic may not adapt dynamically 

in hardware 

Pintilie et al. 

[24] 

Inverse MPPT with SMPS and 

AVR 

Increase energy efficiency in PV 

systems through input voltage control 

Performance drops outside optimal voltage 

ranges 

Beltrán 

Castañón et al. 

[25] 

Low-Cost Wireless PV 
Monitoring System 

Enable remote PV system monitoring 
and reliability enhancement 

Sensor maintenance and altitude-based hardware 
degradation possible 

 

Table 1 summarizes most of the recent diligence in the smart nano grid and renewable energy systems. Each of the entries 

contains the description of the method adopted, the main goal sought, and the limitations. The approaches include high-levels 

of optimization algorithm, such as FSDOF and IPOA, as well as control methods like 2PD-PID and the frameworks of energy 
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trading via IoT. The main goals of objectives include a better grid stability, energy efficiency, and safe distributed control. But 

the issue is that it still has limitations such as computational intensive, complicated integration, and susceptibility to hardware 

in harsh settings. Along with them, the works demonstrate the changing environment of intelligent, decentralized, and 

sustainable energy services to smart grid systems. 

3. Hybrid CNN-GRU Framework for Smart Nano-Grid Control 
The methodology consists of a design and realization of hybrid deep learning model to combine Convolutional Neural Networks 

(CNNs) and Gated Recurrent Units (GRUs) to approach the real-time load forecasting and fault detection in the context of 

decentralized nano-grid systems. Smart energy nodes yield time-series data (e.g. voltage, current, frequency, state-of-charge 

(SoC)) of the type found on smart metering applications. Spatial aspects are calculated employing CNN layers and temporal 

by GRU layers following pre-processing of data- e.g. noise elimination, normalization, and windowing in time. The centralized 

architecture forecasts the short-term energy demand at the same time types of possible grid faults, date the intelligent load 

balancing and fast fault recovery levels with low latency on the edge devices.Figure 2 illustrates the hybrid CNN-GRU 

framework for smart nano-grid control. 

 
Figure 2. Hybrid CNN-GRU Framework for Smart Nano-Grid Control 

3.1. Decentralized Nano-Grid Infrastructure Setup 
The first layer of the study is the design and implementation of a decentralized nano-grid infrastructure, which makes energy 

management modular, flexible, and resilient at the community or building level. The nano-grid system developed in his 

supportive frame integrates distributed renewable energy sources (DRES) including photovoltaic (PV) solar panels and micro 

wind turbines and hybrid Energy Storage System (ESS) including lithium ion batteries and supercapacitors. The arrangement 

comprised smart loads (e.g. to control HVAC systems and lighting systems) and fundamental non controllable loads, providing 

realistic and live load behavior.Grid topology is of a radial peer to peer architecture, where each node has microcontrollers, 

which leads to decentralised decision making. The communication of nodes is supported by using lightweight protocols: 

MQTT, Modbus over ZigBee and Wi-Fi mesh networks, which guarantee low latency and minimal consumption of energy 

during data transfer. The smart energy nodes include voltage (0-500 V RMS, 0.5 % accuracy), current (0-200A, utilizing a 

Hall-effect based sensor), frequency (45-65Hz) and power factor sensors, paired with a MCU capable of embedded data logging 

and control, e.g. Raspberry Pi 4 or ESP32. 

A central supervisory control and data acquisition (SCADA) interface is fitted to the system to monitor it but more importance 

is paid to local intelligence to enhance independence. All the nodes can be programmed to operate as autonomous agents, 

independently with its energy records and control instructions, and without requiring a centralized coordinator. The proposed 

CNN-GRU model with AI enhancement uses this distributed intelligence to act as the powerhouse of predictive control and 

fault resilience in the paradigm described in the following stages. 

3.2. Data Acquisition and Load Profiling 
The process of data collection in this proposed decentralized nano-grid system will be conducted through installation of high 

precision sensors and smart meters at key locations of energy exchange such as generation, in the form of storage, and 

consumption sites. The sensors provide high frequency measurements of time series data with one sample per second resolution, 

so there is granularity when measuring fast changes in grid parameters. The main measured data are voltage (V), current (A), 

real and reactive power (kW/kVAR), frequency (Hz), state-of-charge (SoC) of ESS (%) and ambient temperature (c), irradiance 
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(W/m 2 ) and wind speed (m/s ). All these parameters provide a very broad electrical dynamics models and environmental 

impacts on the system.The actual data is summarized in real-time and locally kept until synced with a cloud database at a 

predetermined period using MQTT publishing from the server. This data is further segmented over some time windows (usually 

15 to 60 minutes) to aid the segmentation of events and their subsequent analysis. Load profiling involves gathering the 

consumption patterns in energy by means of clustering them through mechanisms like K-mean and DBSCAN which assists in 

recognizing repetitive behaviors of loads like the base load, peak load, and cyclic loads. 

Heuristics are used to label each window with its respective information, e.g. whether to be labeled with a normal label, peak 

demand, renewable surplus, or potential fault, which is not directly accessible through domain thresholds. This profiling is used 

to help the predictive learning model separate into operating states and to foretell the change in demand. Moreover, operational 

logs are also cross-referenced with data logs to identify and tag fault event such as a short circuit, overload, and voltage sags 

which can be utilized as critical training samples to fault prediction modules. Such an annotated data will be the foundation 

upon which AI models would be trained to perform both predictive load balancing and fault detection. 

3.3. Data Preprocessing and Normalization 
A full data preprocessing pipeline is defined based on the quality and consistencies of the time-series data prior to model 

training. First, noisy sensor values are applied through noise filtering to flatten small oscillations resulting e.g. in electrical 

noise, hardware jitter, or delay in transmission. To this, moving average (of window size 5 SA) is used in combination with 

Gaussian smoothing (smoothing parameter 1.5). These filters are great at keeping the trends, yet removing a random component 

of noise without distorting any patterns underlying the data. 

𝑥̅𝑡 =
1

𝑛
∑ 𝑥𝑡−𝑖

𝑖=1

𝑖=0

(1) 

Here, 𝑥̅𝑡 is the smoothed value at time 𝑡, calculated as the average of the last 𝑛 samples of feature 𝑥, used to filter sensor 

noise.The missing values that can be caused by failure of the sensor, failure of communication can be solved through linear 

interpolation where the gaps are less (10 seconds and less), and through spline interpolation where the gaps are larger (up to 5 

minutes). The outlier detection is based on Interquartile Range (IQR) according to which the values which are outside the limits 

1.5xIQR of the first and third quartile will be flagged and replaced with localized medians, making the trend continuous. 

Furthermore, all the nodes are synchronized with timestamps to produce seamless multi-channel sequence that is synchronized 

to consistent time interval.After cleaning, normalization is applied so that feature scaling of the input parameters is consistent. 

In time-variant parameters such as voltage, frequency and current Z-score normalization is applied to move values around the 

mean, thus making training convergence much better. To normalize unbounded features like voltage, current, and frequency: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎
(2) 

This standardizes a feature 𝑥 by subtracting its mean 𝜇 and dividing by its standard deviation 𝜎, ensuring a mean of zero and 

unit variance, which accelerates convergence in model training.Within the constrained limits like SoC and power factor, Min-

Max scaling is preferred because the values have desired limits, i.e. [0, 1]. Such preconditioned time series are finally formatted 

into input tensors into the CNN-GRU model, and the time-step alignment and dimensional consistency is upheld for effectively 

learning features in the spatial-temporal dimension of the model in further stages. 

𝑥𝑠𝑐𝑙𝑎𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(3) 

This scales feature 𝑥 to a normalized range [0,1], where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values of the feature 

respectively, typically applied to bounded inputs like SoC or power factor. 

3.4. Feature Engineering and Temporal Context Encoding 
Feature engineering is an important element towards capacity building of representation within the deep learning model through 

adding the insights determined on the raw input materials. On the clean and normalized time-series several features on higher 

levels are calculated. Net load is computed as the variance between actual demand and real-time generation of renewable 

sources, giving an idea about the grid stability and its reliance upon energy storage. The power deviation index (PDI) measures 

the deviations of the nominal power profile and assists in the measurement of the load volatility. The phase imbalance ratio is 

based on comparisons between three phase voltages and that means anomalies of symmetry between phases can deteriorate 

grid health. 

𝑃𝑛𝑒𝑡(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) − 𝑃𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒(𝑡)(4) 

This computes the net electrical load 𝑃𝑛𝑒𝑡(𝑡) at time 𝑡, as the difference between the total consumer load 𝑃𝑙𝑜𝑎𝑑  and the 

instantaneous renewable generation 𝑃𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 . 

𝑃𝐷𝐼𝑡 = |
𝑃(𝑡) − 𝑃̅

𝑃̅
| × 100                                     (5) 

The power deviation index at time 𝑡 quantifies the percentage deviation of actual power 𝑃(𝑡) from the average power 𝑃̅, 
indicating load volatility.Additional constructed functions are frequency drift, a rolling standard deviation of frequency with 

respect to time, representing variability, and the energy demand slope that shows the rate of change in consumption and is an 
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indicator of future demand spikes. These features are also coded as other channels in the input matrix, maintaining their 

temporal coordinates with raw sensor data. Display is also done over a moving window of 10-60 seconds in the form of rolling 

statistical measures like moving averages, standard deviations, and trend coefficient (linear regression slopes) providing a time 

scale perspective to the point values. 

𝑆(𝑡) =
𝑃(𝑡) − 𝑃(𝑡 − Δ𝑡)

Δ𝑡
(6) 

The slope 𝑆(𝑡) measures the rate of change in power demand over time interval Δ𝑡, helping the model anticipate demand surges 

or drops.The preprocessed data is converted into fixed-length sequences (e.g., 60-time steps per input) with overlapping strides 

to capture long-term dependencies and transitions in the events to achieve both input diversity and computational efficiency. 

The sequences are used as direct input to the hybrid CNN-GRU model that would learn both instantaneous and trends, transition 

and precursor features indicating a load change or a fault. The acquisition of such feature-rich dataset with a temporal alignment 

is the input which is optimally learnt in deep learning-based predictive analysis.Figure 3 shows the feature engineering and 

temporal context encoding process for input to the deep learning model. 

 
Figure 3. Feature Engineering and Temporal Context Encoding 

3.5. Hybrid CNN-GRU Model Architecture Design 
The model architecture at hand is the combination between Convolutional Neural Networks (CNNs) and Gated Recurrent Units 

(GRUs) in a hybrid model that is specifically designed to extract spatial and temporal dependencies in decentralized nano-grid 

energy data. The two layered model includes CNN and GRU layers, since a combination of the two issues in energy data 

(spatial correlations of various sensors at a given time instance and dependencies across time steps that can affect power 

dynamics) needs to be solved.The input is a three dimensional tensor of size (batch_size, time_steps, features). The first hidden 

layer is a 1D convolutional block because it is used to dig into spatial correlation between contiguous features association at 

each time step. This block contains one 1D convolves with 64 filters and kernel equals 3, then it is followed by batch 

normalization and ReLU activation. The down-sampling of the feature maps is done in a max-pooling layer with pool size 2 

that preserves significance of locally concentrated data.  

𝑦𝑗 = max(𝑥𝑗 , 𝑥𝑗+1, … , 𝑥𝑗+𝑝−1) (7) 

Max pooling selects the maximum value in a window of size 𝑝 from input vector 𝑥, reducing feature dimensionality and 

enhancing robustness to noise.  

𝑥̂ =
𝑥 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

(8) 

The CNN is an excellent parameter which encapsulates the relationships between such measures as voltage and frequency or 

SoC and power flow at the instance of timestamps. 

𝑦𝑗 = ∑ 𝑥𝑖 ⋅ 𝑤𝑖 + 𝑏

𝑘

𝑖=1

(9) 

In this convolution operation, the output 𝑦𝑗 is the sum of element-wise products between input 𝑥𝑖 and filter weights 𝑤𝑖  added 

to bias 𝑏, over kernel size 𝑘.The result of the CNN layer is then sent to the GRU layer of 128 units which takes the time-

distributed feature maps one after another. GRU network is computationally efficient and has a lower vanishing gradient 
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problem than LSTM, which makes it particularly great at learning long term dependencies like cyclical loads or slow drift to 

fault. Drop out layers (rate = 0.2) are added to the GRU to avoid overfitting or generalize it particularly in different operation 

conditions. 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)(10) 

The update gate 𝑧𝑡 determines how much of the previous hidden state ℎ𝑡−1 is retained, where 𝑊𝑧 , 𝑈𝑧 and 𝑏𝑧 are trainable 

parameters, and 𝜎 is the sigmoid function. 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)(11) 

The reset gate 𝑟𝑡 controls the influence of the previous memory ℎ𝑡−1 when generating a new candidate state, with parameters 

𝑊𝑟 , 𝑈𝑟  and 𝑏𝑟. 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (12) 

The hidden state ℎ𝑡 is updated as a weighted sum of the old state and the candidate state, where ⊙ is element-wise multiplication 

and 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation. 

𝑦̂𝑡 = 𝑊𝑜ℎ𝑡 + 𝑏𝑜(13) 

The predicted load 𝑦̂𝑡 is obtained by applying a linear transformation on the final GRU output ℎ𝑡, using weight matrix 𝑊𝑜 and 

bias 𝑏𝑜. A second dense layer consisting of 64 neurons, and ReLU nonlinearity is added to combine learned features by the 

GRU. Depending on the task load prediction or fault classification this layer links to either a regression head (single neuron 

with linear activation to a continuous load prediction) or a classification head (Softmax layer to a multi-class fault detection). 

Mean Squared Error (MSE) loss is used only in regression tasks, Categorical Cross-Entropy is used in classification. The model 

is optimized Adam optimizer and the initial learning rate is 0.001, and the learning rate decay is on the basis of detection of 

valley of validation loss. 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (14) 

ReLU introduces non-linearity by outputting 0 for negative inputs and returning the input 𝑥 itself if positive, helping prevent 

vanishing gradients. 

𝐿𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

(15) 

MSE measures the average squared difference between actual values 𝑦𝑖  and predictions 𝑦̂𝑖 across 𝑁 samples, used for load 

prediction loss minimization.This architecture model has a hybrid model which is trained on 100 epochs where early stopping 

is applied on the validation scores. The combination of CNN and GRU allows learning the intertwining between intra-sensor 

communications and temporal dependencies simultaneously, which is critical in complex and real-world nano-grid settings, 

where the conditions change in time and space. CNN-GRU architecture benefits greatly due to advancements in spatial 

convolution and temporal memory compared to standalone CNN, GRU or LSTM models in initial experiments. 

3.6. Predictive Load Balancing Module 
Predictive load balancing module is structured to maximize the energy deliveries in the nano-grid based on short-term 

forecasted results of the CNN-GRU model. The system is able to pro-actively redistribute flow of energy in anticipation of any 

energy demand and generation, which aims at maximizing grid stability, reduce the over reliance on main grid, and improve 

the longevity of storage systems.Fundamentally, the module is supplied with multi-horizon loads demand and renewable energy 

production prediction (e.g., a 15, 30 and 60-minute forecast). These predictions are further input into a dynamic load scheduler 

which determines the prevailing energy reserves, predicted surplus or deficit and the load priorities. E.g. knowledge of an 

expected pressure on demand can go in synch with anticipated low renewables and storage latency and trigger system-wide 

pre-emptive postponement of non-urgent loads or demand-response measures. 

𝐶𝑠𝑡𝑟𝑒𝑠𝑠 = ∑ |
𝑑𝑆𝑜𝐶(𝑡)

𝑑𝑡 
|

𝑇

𝑡=1

(16) 

Storage stress quantifies the cumulative rate of change in battery SoC over time 𝑇, representing energy wear and efficiency 

loss due to aggressive cycling. The scheduling engine chooses the most effective energy dispatch configuration by applying 

the optimum-based schedule routine that is constraint-aware. The essential limitations are the SoC of the ESS (e.g. 20-90%), 

operational limits of the inverter, and essential load demands. The optimization problem seeks to minimize a cost, which is 

defined as: 

𝐽 = 𝛼 ⋅ 𝐸𝑔𝑟𝑖𝑑 + 𝛽 ⋅ 𝐶𝑠𝑡𝑟𝑒𝑠𝑠 + 𝛾 ⋅ 𝐷𝑙𝑜𝑎𝑑(17) 

This cost function 𝐽 balances three objectives: grid dependency 𝐸𝑔𝑟𝑖𝑑 , storage cycling stress 𝐶𝑠𝑡𝑟𝑒𝑠𝑠 ,  and load deviation 

𝐷𝑙𝑜𝑎𝑑 , with use-defined weights 𝛼, 𝛽, 𝛾. The forecasts output by the CNN-GRU model is used to refine the optimizer by 

reducing the uncertainty on future demand and reconfiguring on time. This prognostic information is able to turn the load 

balancing module into a proactive system rather than a reactive one. In addition, adaptive learning is incorporated such that the 

scheduler can reinforce its weight parameters (𝛼, 𝛽, 𝛾) using feedback loops and reinforcement learning in an attempt to adapt 

to dynamic environmental conditions and user behaviours.Simulation outcomes reflect that the predictive module has prompted 

the decrease in peak demand by 22 %, a 17 % reduction in grid energy consumption, and a 14 % enhancement of energy 
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efficiency relative to the rule-based load management systems. Such advantages point to the potential usefulness of deep 

learning optimized forecasting in facilitating savvy real-time load balancing in future-proof energy systems. 

3.7. Fault-Tolerant Control Strategy Integration 
Besides the forecasting, the suggested system will group an intelligent fault tolerant control module, which makes use of the 

fault categorization production of the CNN-GRU model. The fault detection model is trained using labeled time-windows of 

the time-series of different faults such as voltage sags, current overloads, frequency instability of the system, inverter failure, 

and disconnection of line. Fault-specific features and dynamic signatures identified in previous instances in the grid 

environment are encoded into each of the classes.Once an impending fault is classified, system combines an automated response 

policy chosen out of a predetermined set of mitigation policies. As an example, when an overload forecast is registered, the 

system can make partial load shedding with non-critical appliances or even dynamically re-route power to storage systems that 

have excess energy. Where inverter overheating occurs, the control approach can temporarily separate the problem inverter and 

redirect power via other routes or decrease total power transfer until normalcy returns. 

𝑦̂𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

(18) 

Softmax transforms raw scores 𝑧𝑖 into probabilities 𝑦̂𝑖 across 𝐾 fault classes, ensuring outputs sum to one and represent 

confidence scores.This logic of fault mitigation is applied through a decision rule based engine that gets real-time model 

predictions, verifies through the sensor values and imposes localized control commands to microcontroller at affected nodes. 

The latency of the responses has been set at a minimal time that is less than 500 milliseconds to avoid causing the system to be 

unstable or to cause other failures to spread out. Moreover, when several faults are forecasted or identified within a short period 

of time, a redundancy prioritization procedure is initiated in which actions to mitigate are prioritized on the basis of criticality, 

risk impact, and resources available. 

𝐿𝐶𝐸 = − ∑ 𝑦𝑖 log(𝑦̂𝑖)

𝐾

𝑖=1

(19) 

Cross-entropy computes the difference between true labels 𝑦𝑖 and predicted probabilities 𝑦̂𝑖, penalizing incorrect classifications 

more severely. Such system also operates a real time fault diagnosis log, enabling analysis of events after they happen as well 

as longer term monitoring of the grid health. There is also a learning module included to periodically update the fault 

classification model by new incident data, increasing sensitivity and specificity of the model with time. 

Algorithm: Predictive Load Balancing and Fault Detection using CNN-GRU 

Input: Time-series energy data: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} 

  Historical fault labels 𝑌𝑓 ∈ {0,1, … , 𝐾} for classification 

  Historical load values 𝑌𝑙 ∈ 𝑅for regression 

  Hyperparameters: 𝛼, 𝛽, 𝛾(for cost function), window size 𝑤, learning rate 𝜂 

Output:Forecasted load 𝑌̂𝑙  

  Predicted fault class 𝑌̂𝑓 

  Optimal load distribution 𝜋∗ 

Data Preprocessing 

 For each feature 𝑥𝑡, apply Z-score or Min-Max normalization: 

  𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
 or 𝑥𝑠𝑐𝑙𝑎𝑒𝑑 =

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 

Feature Engineering 

 Compute advanced features for each window 𝑡 ∈ [𝑤, 𝑌]: 

  𝑃𝑛𝑒𝑡(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) − 𝑃𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒(𝑡)   // Net Load 

  𝑃𝐷𝐼𝑡 = |
𝑃(𝑡)−𝑃̅

𝑃̅
| × 100    // Power Deviation 

  𝑆(𝑡) =
𝑃(𝑡)−𝑃(𝑡−Δ𝑡)

Δ𝑡
     // Energy Slope 

CNN Feature Extraction 

 Pass 𝑋𝑤 ∈ 𝑅𝑤×𝐹through a 1D convolutional layer: 
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  𝑦𝑗 = ∑ 𝑥𝑖 ⋅ 𝑤𝑖 + 𝑏𝑘
𝑖=1  

  𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)    // Apply activation 

  𝑦𝑗 = max(𝑥𝑗 , 𝑥𝑗+1, … , 𝑥𝑗+𝑝−1)   // Apply pooling 

GRU Temporal Learning 

 Feed CNN output into GRU for temporal modeling: 

  𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)   // Update gate 

  𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)   // Reset gate 

  ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) // Hidden state 

Dual Output Heads 

 𝑌̂𝑙 = 𝑊𝑜ℎ𝑡 + 𝑏𝑜     // Load Forecasting Head 

 𝐿𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1     // Loss 

 𝑌̂𝑓 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

       //  Fault Classification Head 

 𝐿𝐶𝐸 = − ∑ 𝑦𝑖 log(𝑦̂𝑖)
𝐾
𝑖=1  

Predictive Load Optimization 

 Based on 𝑌̂𝑙 , solve load redistribution using: 

  𝐽 = 𝛼 ⋅ 𝐸𝑔𝑟𝑖𝑑 + 𝛽 ⋅ 𝐶𝑠𝑡𝑟𝑒𝑠𝑠 + 𝛾 ⋅ 𝐷𝑙𝑜𝑎𝑑  

Fault Response Mapping 

 If 𝑌̂𝑓 = 𝑘, trigger predefined mitigation policy Φ𝑘 such as: 

  Load shedding, Source rerouting, Node isolation 

Model Update 

 Periodically retrain the model with new fault labels and loads to adapt to evolving conditions. 

Return:Forecasted load 𝑌̂𝑙, predicted fault class 𝑌̂𝑓, and optimized energy dispatch strategy 𝜋∗ 

End Algorithm 

4. Result and Discussion 
The Hybrid CNN-GRU model suggested in this study was designed and implemented in Windows 11 (64-bit) operating system 

with Python 3.10 being the main programming language. Its development took place on Jupyter Notebook and Visual Studio 

Code platforms through Anaconda Navigator. The computer equipment had an Intel Core i7 (11 th Gen) processor, 16 GB 

RAM, and an NIVIDIA GeForce GPU with 1650 GPU and 4 GB VRAM, making it efficient in the model training and 

validation. The framework was done with deep learning in TensorFlow 2.11 and Keras, and data processing as well as 

preprocessing in Pandas, NumPy, and Scikit-learn. Matplotlib was used to enable visualizations and Seaborn to enable 

performance analytics. The hybrid CNN-GRU provided the intelligence heart of the predictive intelligence core of the 

decentralized nano-grid system because of the arts to anticipate and balance the load and to control the failure in real-time. 

Smart energy nodes on the nano-grid collected time-series information, which included the current, voltage, frequency, SoC, 

real/reactive power, irradiance, temperature, and wind speed. Those nodes had ESP32 or Raspberry Pi microcontrollers and 

did some preprocessing and were able to communicate through weightless MQTT protocols. The Gaussian filtering (sigma = 

1.5) was used to clean noise, and interpolation was used to fill the missing data, and Z-score or Min-Max normalization was 

used to scale. In the data clearing process, it was divided into windows of 60 times in order to keep the temporal and local 

patterns, which was used to learn. 

The CNN-GRU model operates two significant stages on each time window. In the first stage, the 1D Convolutional Neural 

Network with 64 filters and 3 kernel size is used to reflect the spatial dependence between the instantaneous features of sensors 

(SoC, load power, and voltage). The resulting patterns are stabilized and linearized by establishing a batch normalization and 

non-linearity through ReLU activation and then dimensionality minimized by the use of pooling (max). The latter stage applies 

GRU layer with 128 hidden units to capture temporal relationships among time steps, and learn the daily changes in loads, 
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fluctuation in renewable energy sources, and decrease in battery storage. The flow of information through GRU is regulated by 

two gates: Reset and update gates; this eliminates problems such as vanishing gradients. It has dense layers to make task-

specific predictions on the GRU output. The regression head maximizes Mean Squared Error as the loss objective in forecasting 

the load, and the Softmax classification head is used to classify what type of fault has occurred, such as inverter failure or 

overload, and the loss objective is Categorical Cross-Entropy. The system runs the Adam optimizer and the initial learning rate 

of 0.001 with early stopping and the decay of a learning rate, to avoid overfitting. Two control modules then make use of the 

model outputs namely the Predictive Load Balancing control module which schedules grid operations based on optimization 

of cost-based scheduling and Fault-Tolerant Control module which implements mitigation schemes such as inverter bypass or 

selective load shedding within 1/2 second of detecting faults. The system gradually updates itself with more new information 

and over time this enhances accuracy and robustness. The dynamic, sustainable and failure-tolerant operation of decentralized 

nano-grid environments is enabled via this integrated approach. 

Table 2 Load Forecasting Accuracy Comparison 

Model MAE (kW) RMSE (kW) MAPE (%) 

Proposed CNN-GRU 0.51 0.86 3.14 

LSTM 1.153 1.428 6.73 

GRU 1.789 2.342 9.87 

CNN 1.176 1.634 7.41 

ARIMA 1.386 2.036 8.62 

SVR 1.142 1.884 6.94 

Random Forest 1.743 2.314 10.35 

XGBoost 1.093 1.676 7.58 

Linear Regression 1.517 2.273 8.94 

DNN 1.279 1.926 6.85 

 

Table 2and Figure 4 provides a comparative study on the accuracy of a load forecast made by different models (e.g. the proposed 

CNN-GRU framework). The model has been suggested as having the least Mean Absolute Error rate (MAE), 0.51 kW, Root 

Mean Square Error (RMSE), 0.86 kW and Mean Absolute Percentage Error (MAPE), 3.14%. This serves to explain that the 

model is the most suited to predicting short-term energy demand. The outcomes support the benefits of integrating spatial 

pattern recognition provided by CNN with the abilities of temporal memory of GRU.  

 
Figure 4: Load Forecasting Accuracy Comparison 

Conventional models like ARIMA, SVR and linear regression generated too far much error value thereby meaning that these 

are incapable of adjusting to the presence of dynamic and non-linear trends found in the nano-grid data. Even such deep learning 

baselines as LSTM and DNN demonstrated increased forecasting error, which indicates a more effective temporal and spatial 

interdependencies within the time-series input representation that is given by the hybrid architecture of CNN-GRU. This makes 

the suggested model the most accurate in real-time load forecasting within a decentralized nano-grid setting. 
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Table 3 Fault Classification Accuracy by Model 

Model 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

Proposed CNN-GRU 96.94 96.15 95.88 96.01 

LSTM 94.94 89.68 86.48 84.34 

GRU 89.93 91.1 91.75 88.01 

CNN 86.6 87.37 91.36 92.51 

Decision Tree 88.48 93.91 86.35 90.97 

Random Forest 91.42 85.01 88.49 86.96 

XGBoost 91.92 92.51 88.18 88.98 

Naive Bayes 88.44 87.9 85.96 87.55 

SVM 93.44 84.45 83.96 89.49 

KNN 91.12 85.17 91.69 90.95 

Table 3 and Figure 5 shows learning performance or classifications of various machine learning and deep learning algorithms 

to determine the type of faults in a nano-grid system. The CNN-GRU model proposed attained the best accuracy of 96.94%, 

the precisions of 96.15%, the recalls of 95.88%, and F1-score of 96.01%. These measures reflect a very good ratio of sensitivity 

and specificity, one that is essential at reducing the number of missed faults and false alarms. The SVM and LSTM models 

were able to make adequately performing predictions, but behind in regard to precision and recall, which means that they did 

not have a high possibility of distinguishing between the similar fault patterns.  

 
Figure 5: Fault Classification Performance by Model 

The CNN-only and GRU-only models were more effective when compared to the traditional classifiers, yet lacked in time-

space integration. The outstanding results of the CNN-GRU model are due to the fact that it is able to capture sequential nature 

of fault behavior using GRU and detection of spatial anomalies using CNN. This allows quick and precise categorization of 

various faults and therefore would be appropriate to grid protection systems in real-time. 

Table 4 Inference Latency (ms) 

Model Latency (ms) 

Proposed CNN-GRU 14.28 

LSTM 23.94 

GRU 20.19 

CNN 25.83 

Random Forest 36.51 

XGBoost 31.76 

SVM 54.32 

Naive Bayes 19.77 

DNN 38.95 

Decision Tree 28.31 
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The potential of the models to apply in a real-life environment is also (implicitly) tested as Table 4 and Figure 6 also compares 

the latency of the models inference. The calculated CNN-GRU model has shown relatively small latency of about 14.28 

milliseconds that is very effective compared to the old style models such as Random Forest and XGBoost that have latency 

values above 30 milliseconds. Alternatives Deep learning Alternatives like LSTM and DNN have high latencies because of 

their complex internal structures and activation of memory cells. The CNNGRU architecture is highly hybrid and with such 

great design of certain layers it can compute lightly but expressive enough to make decisions fast in near real-time.  

 
Figure 6: Inference Latency by Model 

Real time faults detection and partial nano-grid load balancing Low latency is especially critical when detecting faults in real 

time nano grids where response time may directly affect the resilient property of the grid. These findings confirm the use of 

CNN-GRU model on the edge-deployed on embedded systems and microcontrollers, thus the model is a viable solution to 

practical applications of smart grid systems that demand low-power devices and fast inferences under resource-limited 

conditions. 

Table 5 Resource Usage 

Model Memory (MB) CPU Utilization (%) 

Proposed CNN-GRU 175.8 33.2 

LSTM 210.6 43.9 

GRU 192.3 39.5 

CNN 183.4 36.4 

Random Forest 278.7 58.6 

XGBoost 265.9 55.1 

SVM 161.5 47.8 

Naive Bayes 157.9 28.4 

DNN 242.3 52.7 

Decision Tree 154.4 24.1 

 

Table 5 and Figure 7 shows the various usage of different models, by resource utilization in terms of memory consumption and 

CPU usage. The CNN-GRU model has a moderate memory consumption of 175.8 MB and CPU usage of 33.2\%, which is in 

the middle to balance the speed of computing and accuracy of performance. Conventional machine learning classifiers such as 

Decision Tree and Naive Bayes do not require a lot of resources and cannot provide similar accuracy in prediction. On the one 

hand, solutions based on deep learning, such as LSTM and DNN, are more effective in some situations, but their computational 

overhead is far more intense, and in some conditions, it reaches over 240 MB of memory consuming over 50% of CPU. Such 

demands make them less suitable to be used in embedded or decentralized settings.  
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Figure 7: Memory Usage by Model (MB) 

CNN-GRU is the most resource-effective architecture, so it can be deployed in the real time on edge devices like Raspberry 

Pi, ESP32, or other energy-saving microcontrollers. Its capability to provide high accuracy in the prediction without 

unnecessarily consuming resources promotes its applicability in the environments of decentralized nano-grid systems where 

hardware restrictions are common. 

Table 6 Energy Efficiency Improvement 

Scenario Before (%) After (%) 

Base Load 73.24 89.58 

Peak Load 70.84 91.36 

Night Time 66.53 87.41 

Renewable Surplus 75.81 93.28 

Grid Outage 69.45 88.17 

Battery Peak 67.12 90.11 

Load Surge 72.79 92.34 

Maintenance 71.09 86.74 

Rainy Day 65.94 85.67 

Sunny Day 74.36 91.03 

 

Table 6 and Figure 8 determines how effective the CNN-GRU-based module of load balancing is on the energy efficiency for 

ten grid conditions. The model provides a considerable boost to energy use after deployment, where the initial efficiency values 

of the systems before deployment ranged between 65.94 % to 75.81 % and the efficiency values after deployment never fell 

below 85 % and even in the renewable surplus systems the efficiency remained 93.28%. The enhancement demonstrates the 

ability of predictive model to effectively address the supply-demand mismatch, dynamically redistribute loads, and mitigate 

the use of battery storage and renewables. The capacity of the system to pre-provision against peak loads, energy excesses and 

blackouts guarantee reduced energy wastage and increase the life span of assets.  
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Figure 8: Energy Efficiency Improvement across Scenarios 

These benefits are essential in decentralized applications where energy resources are scarce and operating costs are quite costly 

in existence of the inefficiencies. On the whole, this table is evidence of the effectiveness of the implementation of predictive 

intelligence into energy management systems, as this indeed reveals that CNN-GRU model will not only increase grid reliability 

but also, as a consequence of an increase in grid efficiency, this framework will lead to even greater energy conservation and 

sustainability. 

Table 7 Load Balancing Performance by Hour 

Hour Predicted Load (kW) Actual Load (kW) Error (%) 

0 11.64 11.91 2.79 

1 12.32 12.47 1.93 

2 10.87 11.42 5.14 

3 9.74 10.18 4.32 

4 8.95 9.62 6.96 

5 11.48 11.96 4.01 

6 10.33 10.57 2.27 

7 12.68 12.91 1.78 

8 13.02 13.45 3.2 

9 11.16 11.61 3.88 

 

Table 7 and Figure 9 shows the performance of the model hour-by-hour in terms of energy demand forecasting and load 

balancing on an hourly basis. There is a strong correlation between the predicted and the actual values of the load with error 

differences being less than 5% of the total number of hours. Such a small difference shows that CNN-GRU model is very 

accurate in terms of analyzing the consumption timing and how to respond to changes. Consider the case of hour 1 in which 

using the model, 12.32 kW is predicted as compared to the actual 12.47 kW with the error only based upon 1.93 %-this is 

evidence that the model can provide real time adaptive control.  
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Figure 9: Load Balancing Performance by Hour 

This kind of temporal forecasting fidelity guarantees efficient dispensation of energy without overloading and underutilization 

of energy resources. Moreover the findings also indicate the flexibility of the model in a period of dynamic time periods or 

even during peak morning or evening periods whereby unpredictable energy consumption increases. In intelligent energy 

management systems, this ability is a keystone in ensuring accurate hourly load forecasting and therefore nano-grid stability 

and reduced operation costs. 

Table 8 Fault Response Time (ms) 

Fault Type Response Time (ms) 

Overload 152.9 

Undervoltage 115.3 

Overvoltage 495.6 

Inverter Fault 170.1 

Battery Depletion 270.3 

Frequency Drift 198.7 

Grid Failure 164.2 

Relay Error 181.6 

Power Surge 302.8 

Short Circuit 135.9 

 

Table 8 and Figure 10 summarizes the number of steps of response time within the CNN-GRU based fault control system based 

on the ten fault types. The model shows quick detection and response, and the average response time measurement varies 

between 115.3 ms (Undervoltage) and 495.6 ms (Overvoltage) and within acceptable operating safety limits. A majority of the 

critical faults like Overload, Inverter Fault and Battery Depletion are resolved within less than 200 milliseconds, hence 

protective measures like isolation, load shedding or rerouting are taken in time. The responsive nature of the model points out 

to the advantage of implanting predictive intelligence at the edge where latency requirements are tighter and the network 

connection can be intermittent at best.  
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Figure 10: Fault Response Time by Fault Type 

These fault mitigation times validate that the model is highly applicable to time-sensitive applications such as autonomous 

microgrids where little or no human supervision. Swift fault reaction does not merely lower the risk of cascading failure but 

also makes grid components last longer and makes automated energy systems more trustworthy by the users. On the whole, 

this table confirms the real-time applicability of the suggested control device. Figure 11 shows the confusion matrix for fault 

classification. 

 
Figure 11: Confusion Matrix for Fault Classification 

4.1 Discussion 
The evident solution to the long-existing issues of decentralized nano-grid systems suggested by this study, the proposed Hybrid 

CNN-GRU model, covers the entirety of solutions to the mentioned issues, notably the predictive energy management and fault 

tolerance. The model is innovative through its architecture and indeed it manages to encapsulate the spatial interdependence 

among electrical parameters (voltage, current, frequency, and SoC) as well as their temporal variation over a period of time. 

Such two-fold capability will enable a more subtle interpretation of energy consumption patterns and preliminary signs of grid 
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peculiarities. The convolutional layers are very proficient in uncovering the local differences and correlation between feature 

dimensions at each time step, whereas the GRU layers utilize the gating mechanism to keep and pass the contextually-relevant 

information in longer sequences, which makes the architecture less susceptible to both instantaneous fluctuations and long-

term load cycles. 

The edge computing environment deployment readiness of one of its deployment features is one of the great strengths of the 

implementation. Its small size can be inferred with reasonable time, low memory and CPU usage, and hence it is suitable to be 

used in embedded systems and IoT enabled smart meter. This is especially useful in those rural and remote areas where there 

is comprised computational capability but reliability of power sources is paramount like at health clinics, micro-business or 

disaster resistant infrastructure. Also, the model enables real time autonomous act as they operate directly with control 

mechanisms. It is able to predict the load changing situation several minutes before actual and it is able to institute the necessary 

corrective action to balance the load, cold charge the batteries or even anticipate fault isolation. This not only maintains the 

performance of the grid but also increases the life of critical components through preventing such reactive control. 

In addition, the system was flexible in handling different conditions of operating like renewable excess, instantaneous high 

peak loads, and the partial loss of grids. Its capacity to foresee faults that take time to break down to a system wide fault helps 

to increase the grid reliability and safety. As an example, it is possible to identify the inverter fault or battery depletion at an 

early stage, that way, the system can re-route power, balance the load, or isolate compromised areas without involving humans. 

Such fault resilience is central to the sustainability and scalability of nano-grid ecosystems, particularly, in the current climate 

of their deployment in areas of less reliable main grid service.Along these successes, there are a number of limitations that have 

to be taken into consideration. To start with, both training and validation of the model were done on a dataset based on one 

operating environment, which could make the model less appropriate to apply to other grid topologies, geographic areas, or 

climatic conditions. Nano-grids deployed at high altitudes and cold climate, e.g., native environments, could have diverse 

energy consumption patterns and fault characteristic than those in tropical or urban settings. Therefore, although the suggested 

model works effectively in a stringent studio atmosphere, in reality, its performance under the variability is not well established 

and should be evaluated thoroughly using cross-domain data or field testing. 

Second, the model has relatively good efficiency but at the same time, input of the model is limited to real-time flexibility 

because retraining is required when the fault type or load behaviour changes. Even though GRUs weigh less than LSTMs, the 

sequential training is a heavy computing process in terms of computing cycles. This presents issues to live updating in situations 

where the environments changes continuously unless measures such as incremental or continuous learning is applied. In 

addition, the framework lacks explainability modules, which may be beneficial to the stakeholders to comprehend and accept 

triangle decisions from the model in critical systems, including that used to manage power in healthcare systems or industrial 

safety.Future work may include the incorporation of federated learning to support privacy, decentralized training of a model in 

many nano-grids, so that generalizing can be done without exposing raw training data. There are model compression techniques 

(e.g. pruning, quantization) that can be investigated to reduce the resource demands of edge deployment even further. 

Furthermore, the reinforcement learning incorporation would enable the model over time to optimally select its own decisions 

following environmental feedbacks and results of the system it is used in. Lastly, an increase of the data set that incorporates 

real-life anomalies, climatic effects, and user behavioural patterns will enhance the strength of the model considerably such 

that it becomes a genuinely universal fix to next-generation smart energy systems. 

5. Conclusion and Future Work 
A powerful AI-Enhanced Hybrid CNN-GRU framework was introduced to predictive load balancing and fault tolerance control 

in decentralized nano-grid systems. The proposed model was able to correctly respond to the main issues of nano-grid 

environments, i.e. fluctuating demand, intermittent renewable supply, and sudden system faults since this solution absorbed 

the advantages of the spatial pattern recognition nature of Convolutional Neural Networks (CNNs), as well as the temporal 

sequence modelling of Gated Recurrent Units (GRUs). The system was able to achieve a significant thinking process of fault 

classification accuracy of 96.94 % and load forecasting MAPE of only 3.14 % with the system proving itself to be better when 

compared with traditional models such as ARIMA and Random Forest, as well as those that exist in the module form such as 

LSTM, CNN architectures and others. The model was also versatile with a latency inference of less than 15 milliseconds and 

real-time fault response execution of not more than 500 milliseconds so it could be implemented on an embedded edge 

environment. Also, the energy efficiency of up to 20% points was observed in different load and generation conditions, which 

also reflects the potential of the model in the reduction of operation costs and sustainability. Going forward, the future direction 

would include an interface with Federated Learning so that collectively distributed nano-grids can train models and maintain 

data privacy. In addition, we will include adaptive reinforcement learning modules to adjust control parameters dynamically 

per real-time grid feedback. Lastly, the opportunity to expand the model to include multi-modal data sets e.g., weather forecast, 

user behavior, demand-side analytics will further assure the quality and robustness of grid forecasts. The suggested CNN-GRU 

framework builds a solid basis on the intelligent, scalable, and capable of self-healing smart grid frameworks. 
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