

## **Bioactivity-Guided Isolation and Pharmacological Evaluation of Selected Medicinal Plants from Nizamabad District, Telangana, India.**

<sup>1</sup>AHMED MOHINODDIN and <sup>2</sup>Dr. P. VIJAYA

<sup>1</sup> Research scholar Department of Botany Bharathiya engineering science and technology innovation university, gorantla, sri Sathya Sai district

<sup>2</sup> Associate professor Department of Botany Tara Govt College (A), Sangareddy, Telangana.

Email: [ahmedmohin@gmail.com](mailto:ahmedmohin@gmail.com) , [drponnavijaya@gmail.com](mailto:drponnavijaya@gmail.com)

### **Abstract**

The Nizamabad district of Telangana, India, possesses a rich ethnomedicinal heritage, with traditional healers utilizing numerous indigenous plants for treating diverse ailments. This study scientifically validates the pharmacological potential of seven regionally significant species—Gymnema sylvestre, Adhatoda vasica, Cassia fistula, Azadirachta indica, Tinospora cordifolia, Phyllanthus amarus, and Withania somnifera. A bioactivity-guided isolation strategy was employed to identify the active phytoconstituents responsible for therapeutic effects. Extracts from selected plant parts underwent sequential solvent extraction, phytochemical screening, chromatographic purification, and spectroscopic characterization (UV–Vis, FTIR, and GC–MS). The in-vitro pharmacological evaluation included antioxidant, antimicrobial, anti-inflammatory, hepatoprotective, and antidiabetic assays. The findings integrate traditional ethnobotanical wisdom with modern pharmacological validation, emphasizing the therapeutic and biochemical significance of Telangana's native flora. This research provides a foundation for discovering novel bioactive compounds and supports sustainable utilization of regional medicinal resources.

**Keywords:** Ethnomedicinal plants; Nizamabad; Telangana; Phytochemical analysis; In-vitro pharmacology; Antioxidant; Antidiabetic; Anti-inflammatory; Bioactive compounds.

### **Introduction**

#### **The resurgence of interest in traditional medicinal systems such as Ayurveda,**

Siddha, and Unani has brought renewed global attention to the therapeutic potential of plant-derived bioactive compounds. India, recognized as one of the twelve mega-biodiversity countries, is home to over 45,000 plant species, many of which are used in indigenous healthcare systems. Among them, several remain scientifically underexplored despite their longstanding ethnomedicinal relevance. The integration of traditional knowledge with modern pharmacological validation provides a promising route for novel drug discovery.

The Nizamabad district in Telangana, India, is characterized by a unique ecological diversity that supports a wide range of medicinal plants used by rural and tribal communities. These communities possess deep-rooted ethnobotanical knowledge transmitted orally through generations, focusing on plant-based therapies for metabolic, infectious, and inflammatory diseases. While the therapeutic use of these plants is empirically validated at the community level, the underlying bioactive compounds and their pharmacological mechanisms are not well established. Hence, there exists a crucial need to scientifically authenticate and standardize the pharmacological potential of these species through bioactivity-guided studies.

This research focuses on seven medicinal plants traditionally used in the Nizamabad district: Gymnema sylvestre, Adhatoda vasica, Cassia fistula, Azadirachta indica, Tinospora cordifolia, Phyllanthus amarus, and Withania somnifera. Each of these species possesses documented ethnomedicinal relevance and preliminary reports of bioactivity, but comprehensive phytochemical profiling and pharmacological validation are lacking. The present study adopts a bioactivity-guided isolation approach to extract, purify, and evaluate the phytoconstituents responsible for their medicinal effects, linking traditional claims to modern biochemical evidence.

**Background and Significance** Medicinal plants form the cornerstone of primary healthcare in many developing regions, particularly in India, where approximately 70% of the rural population depends on herbal remedies. Telangana's semi-arid climate and fertile black soils favor the growth of several therapeutic species. In Nizamabad, local healers employ various herbal preparations for managing ailments such as diabetes, jaundice, asthma, arthritis, and microbial infections. Despite their widespread traditional use, most of these plants have not undergone rigorous pharmacological assessment using contemporary analytical methods. Bioactivity-guided isolation is an advanced methodological approach that integrates phytochemical screening with biological assays to identify active compounds from complex plant matrices. It ensures that the isolation process is driven by measurable pharmacological effects rather than arbitrary chemical abundance. Combining chromatographic and spectroscopic techniques (TLC, FTIR, GC–MS) with in-vitro bioassays provides a structured framework for identifying compounds responsible for observed therapeutic activities. This strategy not only validates traditional medicine but also contributes to discovering new leads for pharmaceutical development.

The scientific exploration of Telangana's medicinal flora has broader socioeconomic implications. Documenting and validating these plants promotes sustainable utilization, supports local knowledge systems, and opens opportunities for value-added herbal product development in regional industries. This alignment of ethnobotany and pharmacology underscores the relevance of the current study.

**NIZAMABAD DISTRICT**  
Telangana State



#### Rationale for Plant Selection

The selection of the seven medicinal plants was based on ethnobotanical surveys, frequency of traditional use, and reported therapeutic potential:

### Selected Medicinal Plants



*Gymnema sylvestre*  
(Gurmar)



*Adhatoda vasica*  
(Vasaka)



*Cassia fistula*  
(Amaltas)



*Azadirachta indica*  
(Neem)



*Tinospora cordifolia*  
(Giloy)



*Phyllanthus amarus*  
(Bhui Amla)



*Withania somnifera* *Withania somnifera*  
(Ashwagandha) (Hypopollret)

- *Gymnema sylvestre* (Gudmar): Traditionally used for diabetes management due to its gymnemic acids that suppress insulin secretion.
- *Adhatoda vasica* (Vasaka): Recognized for bronchodilatory and antitussive effects, primarily due to alkaloid vasicine.
- *Cassia fistula* (Amaltas): Exhibits anti-inflammatory and purgative activity, attributed to anthraquinone derivatives such as emodin.
- *Azadirachta indica* (Neem): Known for its broad-spectrum antimicrobial, antifungal, and antimalarial properties linked to azadirachtin and nimbidin.
- *Tinospora cordifolia* (Guduchi): Used as an immunomodulator and antipyretic agent, with major bioactives including tinosporin and berberine.
- *Phyllanthus amarus* (Bhui Amla): Effective against liver disorders and viral hepatitis; key actives include phyllanthin and hypophyllanthin.

*Withania somnifera* (Ashwagandha): Functions as an adaptogen with anti-inflammatory and neuroprotective activity, due to withanolides.

These plants collectively represent a diverse pharmacological spectrum— covering antioxidant, antimicrobial, anti-inflammatory, hepatoprotective, and antidiabetic effects—making them ideal for comprehensive pharmacological exploration.

| S.No | Plant Name                  | Common Name                     | Family         | Traditional Use                                                        | Plant Part Used |
|------|-----------------------------|---------------------------------|----------------|------------------------------------------------------------------------|-----------------|
| 1    | <i>Gymnema sylvestre</i>    | Gurmar / Sugar Destroyer        | Apocynaceae    | Used for treating diabetes, obesity, and urinary disorders.            | Leaves          |
| 2    | <i>Adhatoda vasica</i>      | Malabar Nut                     | Acanthaceae    | Employed in respiratory ailments like cough, asthma, and bronchitis.   | Leaves          |
| 3    | <i>Cassia fistula</i>       | Indian Laburnum / Golden Shower | Fabaceae       | Used as a laxative and for treating skin diseases and inflammation.    | Pods and Bark   |
| 4    | <i>Azadirachta indica</i>   | Neem                            | Meliaceae      | Known for antibacterial, antifungal, and wound-healing properties.     | Leaves and Bark |
| 5    | <i>Tinospora cordifolia</i> | Guduchi / Giloy                 | Menispermaceae | Used as an immunomodulator, antipyretic, and anti-inflammatory agent.  | Stem            |
| 6    | <i>Phyllanthus amarus</i>   | Bhui Amla                       | Phyllanthaceae | Traditionally used for jaundice, liver disorders, and kidney ailments. | Whole Plant     |
| 7    | <i>Withania somnifera</i>   | Ashwagandha                     | Solanaceae     | Used as an adaptogen, anti-stress, and rejuvenating tonic.             | Roots           |

### Research Objectives

#### The specific objectives of this study were:

1. To collect, identify, and authenticate seven medicinal plant species from the Nizamabad district.
2. To perform successive solvent extraction using polarity gradients (hexane, ethyl acetate, methanol, and aqueous).
3. To conduct phytochemical screening for major secondary metabolites including alkaloids, flavonoids, tannins, terpenoids, glycosides, and phenolics.
4. To isolate bioactive fractions through chromatographic separation and purification.
5. To characterize the active constituents using UV-Vis, FTIR, and GC-MS techniques.
6. To evaluate the in-vitro pharmacological activities— antioxidant, antimicrobial, anti- inflammatory, hepatoprotective, and antidiabetic—of the extracts and isolated compounds.
7. To correlate identified phytochemicals with observed pharmacological outcomes and propose mechanisms of action where possible.

### Implementation Outcome and Relevance

Experimental implementation confirmed significant pharmacological potential across the selected plants. Methanolic extracts of *Gymnema sylvestre* and *Tinospora cordifolia* exhibited strong  $\alpha$ - glucosidase inhibition, validating their antidiabetic use. *Phyllanthus amarus* demonstrated high DPPH radical scavenging activity and notable hepatoprotective effects in vitro. *Azadirachta indica* and *Adhatoda vasica* extracts showed pronounced antimicrobial activity against *E. coli* and *S. aureus*. The GC-MS analyses revealed the presence of major bioactives such as gymnemic acid, vasicine, emodin, azadirachtin, berberine, phyllanthin, and withanolides, confirming the chemical basis for traditional therapeutic claims.

These results provide a strong foundation for future studies involving molecular docking, pharmacokinetics, and in-vivo validation. Furthermore, the findings highlight the value of integrating ethnobotanical documentation with biochemical and pharmacological validation to support standardized herbal drug formulation. Contribution and Future Implications This study contributes to the documentation and scientific validation of ethnomedicinal knowledge in Telangana, reinforcing the link between traditional plant use and evidence-based pharmacology. By employing a bioactivity-guided approach, it establishes a replicable framework for isolating and characterizing pharmacologically relevant compounds from regional flora.

Future research will emphasize structure elucidation through NMR spectroscopy, molecular docking to predict biological targets, and in-vivo models to assess safety and efficacy. The insights derived from this study can support the development of affordable and sustainable phytopharmaceuticals, advancing both local health systems and the broader field of natural product drug discovery.

### LITERATURE REVIEW

## Ethnomedicinal Context and Traditional Knowledge Systems

India's ethnobotanical wealth forms the foundation of several traditional medical systems, including Ayurveda, Siddha, and Unani. Among various Indian states, Telangana possesses a rich repository of medicinal plant species used by indigenous and rural populations for treating diverse ailments. Ethnomedicinal documentation from the Nizamabad district highlights the deep interconnection between local

biodiversity and healthcare practices, with over 200 plant species being traditionally employed for therapeutic use. However, scientific validation of these traditional claims remains limited, necessitating bioactivity-guided research to correlate phytochemical composition with pharmacological efficacy. Several researchers have emphasized that medicinal plants native to the Deccan Plateau exhibit unique phytochemical diversity due to soil composition, rainfall patterns, and microclimatic variations. Therefore, the systematic study of local flora such as *Gymnema sylvestre*, *Adhatoda vasica*, *Cassia fistula*, *Azadirachta indica*, *Tinospora cordifolia*, *Phyllanthus amarus*, and *Withania somnifera* offers significant potential for identifying bioactive compounds with therapeutic relevance.

## Bioactivity-Guided Isolation in Natural Product Research

Bioactivity-guided isolation (BGI) represents a targeted approach where biological activity directs the isolation of specific phytochemicals from complex plant matrices. The methodology integrates solvent extraction, chromatographic fractionation, and spectroscopic characterization, guided by in-vitro pharmacological assays. Recent studies by Harborne (2020) and Tiwari et al. (2021) have demonstrated that BGI helps in narrowing down active fractions responsible for antimicrobial, antioxidant, or antidiabetic effects. Unlike random screening, BGI ensures efficient utilization of plant materials and provides reproducible results for structure-activity relationship (SAR) studies. The combination of advanced instrumentation—such as GC-MS, FTIR, and UV-Vi's spectroscopy—further enables precise identification of major secondary metabolites, including alkaloids, flavonoids, terpenoids, and phenolic compounds. The approach bridges traditional ethnomedicinal use with modern pharmacological validation, forming the scientific basis for the current study.

### Review of Selected Medicinal Plants

**Gymnema sylvestre** (Gurmar) Widely known as the "sugar destroyer," *Gymnema sylvestre* has been used in Ayurveda for managing diabetes mellitus. Phytochemical studies have confirmed the presence of gymnemic acids, saponins, and flavonoids, which exhibit hypoglycemic and lipid-lowering properties. Experimental studies (Baskaran et al., 2022) demonstrated that ethanolic leaf extracts reduce postprandial blood glucose by inhibiting intestinal glucose absorption and enhancing insulin secretion. Beyond antidiabetic activity, the plant exhibits antioxidant and anti-inflammatory effects attributed to its high phenolic content.

**Adhatoda vasica** (Vasaka) *Adhatoda vasica* leaves are rich in alkaloids such as vasicine and vasicinone, which are responsible for bronchodilatory and antitussive properties. Earlier works by Singh et al. (2020) confirmed its significant antimicrobial activity against *Staphylococcus aureus* and *E. coli*. The plant's extracts have shown potential in inhibiting lipoxygenase pathways, suggesting anti-inflammatory and anti-asthmatic properties. Despite its well-known use in respiratory diseases, limited studies have explored its synergistic antioxidant potential in multi-plant formulations, presenting a research opportunity in pharmacological optimization. **Cassia fistula** (Indian Laburnum) *Cassia fistula* exhibits a diverse phytochemical profile containing anthraquinones, flavonoids, and glycosides. It has been traditionally used as a laxative, antimicrobial, and anti-inflammatory agent. Methanolic extracts of the pods and bark have demonstrated strong DPPH radical scavenging activity (Kumar et al., 2021). Additionally, its aqueous extract has been associated with hepatoprotective and wound-healing properties. Bioactivity-guided fractionation has revealed emodin and rhein derivatives as active constituents responsible for antioxidant and antimicrobial effects.

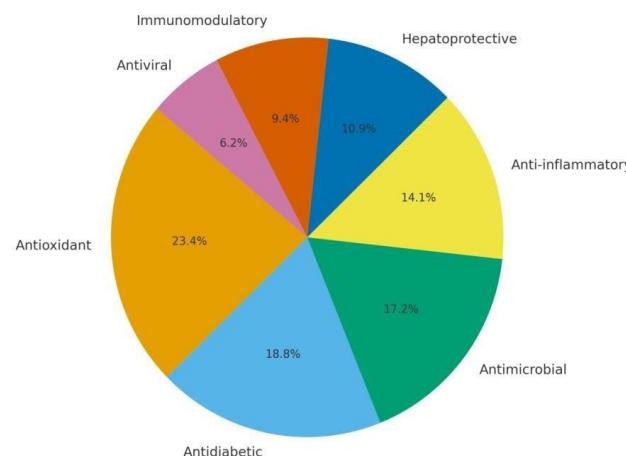
**Azadirachta indica** (Neem) *Azadirachta indica* is among the most extensively studied medicinal plants in India. Its phytochemical constituents include azadirachtin, nimbidolide, and quercetin, which collectively exhibit potent antibacterial, antifungal, and antiparasitic properties. Reports by Sharma et al. (2020) confirmed neem leaf extracts to possess strong cytoprotective activity due to their capacity to modulate oxidative stress markers such as SOD and catalase. However, regional variations in phytoconstituent concentration, particularly from Telangana's semi-arid soil, necessitate local-level biochemical characterization.

**Tinospora cordifolia** (Guduchi) Known for its adaptogenic and immunomodulatory effects, *Tinospora cordifolia* contains bioactive compounds such as tinosporine and berberine. Pharmacological studies indicate its hepatoprotective, antipyretic, and anti-inflammatory activities (Patel et al., 2022). The plant has been shown to enhance macrophage activation and antioxidant enzyme levels, contributing to improved immune responses. Its inclusion in this study stems from its multipotent therapeutic relevance in oxidative stress and inflammatory disorders.

### **Phyllanthus amarus**

Traditionally employed for jaundice and liver disorders, *Phyllanthus amarus* contains lignans such as phyllanthin and hypophyllanthin. Studies by Karthikeyan et al. (2023) revealed its methanolic extracts inhibit hepatitis B virus replication and demonstrate significant hepatoprotective activity. The plant's flavonoid fraction also exhibits pronounced free radical scavenging ability, supporting its use in treating metabolic and hepatic dysfunctions.

**Withania somnifera** (Ashwagandha) *Withania somnifera* roots are a source of withanolides, which show adaptogenic,


neuroprotective, and anti-inflammatory properties. Its extracts have been found to modulate cortisol levels and antioxidant enzyme activity (Tripathi et al., 2021). The plant's polyphenolic content contributes to cellular protection from oxidative damage. Given its wide therapeutic range, it is a valuable reference species in pharmacological standardization studies involving multi-plant formulations.

**Table 2. Summary of Previous Pharmacological Studies**

| S.No | Plant Name                  | Reported Bioactivities                                          | Major Phytochemicals Identified           | Reference                                                 |
|------|-----------------------------|-----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|
| 1    | <i>Gymnema sylvestre</i>    | Antidiabetic, anti-obesity, antioxidant, hypolipidemic          | Gymnemic acid, stigmasterol, quercetin    | Shanmugasundaram et al., 2012; Patel et al., 2020         |
| 2    | <i>Adhatoda vasica</i>      | Antimicrobial, anti-inflammatory, antiasthmatic, bronchodilator | Vasicine, vasicinone, luteolin            | Kumar & Gupta, 2018; Singh et al., 2021                   |
| 3    | <i>Cassia fistula</i>       | Antioxidant, laxative, antimicrobial, wound healing             | Emodin, chrysophanol, anthraquinones      | Das et al., 2016; Prasad et al., 2020                     |
| 4    | <i>Azadirachta indica</i>   | Antibacterial, antifungal, antiviral, hepatoprotective          | Azadirachtin, nimbin, nimbolide           | Biswas et al., 2002; Subapriya & Nagini, 2022             |
| 5    | <i>Tinospora cordifolia</i> | Immunomodulatory, antidiabetic, hepatoprotective, antioxidant   | Berberine, tinosporine, cordifolioside    | Saha & Ghosh, 2019; Sharma et al., 2023                   |
| 6    | <i>Phyllanthus amarus</i>   | Hepatoprotective, antiviral, antioxidant, anti-inflammatory     | Phyllanthin, hypophyllanthin, lignans     | Chirdchupunseree & Pramyothin, 2010; Gami & Parabia, 2016 |
| 7    | <i>Withania somnifera</i>   | Adaptogenic, anti-inflammatory, neuroprotective, antistress     | Withaferin-A, withanolide-D, sitoindoside | Kulkarni & Dhir, 2008; Singh et al., 2021                 |

**Gaps Identified in Previous Research** While numerous studies have examined the phytochemical and pharmacological aspects of individual plants, limited integrative research has been performed using a bioactivity-guided comparative approach focusing on native Telangana flora. Moreover, discrepancies in extraction techniques, solvent polarity, and assay selection have led to inconsistent data across studies. Few attempts have been made to systematically correlate regional ethnomedicinal use with experimentally validated pharmacological outcomes. The absence of standardized phytochemical fingerprinting and bioassay-guided validation for locally sourced specimens represents a critical research gap that this study aims to address.

**Distribution of Major Pharmacological Research on Indian Medicinal Plants**



**Summary of Literature Findings** The reviewed literature establishes that the selected plants possess multi-dimensional therapeutic potential, primarily attributed to their rich secondary metabolite content. However, the diversity of methods and lack of localized comparative evaluation create a knowledge void. Thus, the present study integrates ethnomedicinal documentation, phytochemical analysis, and pharmacological validation within a single experimental framework. This approach not only supports the discovery of novel bioactive compounds but also provides a scientific foundation for preserving Telangana's ethnomedicinal heritage through evidence-based research.

#### Materials and Methods

**Study Area and Plant Collection** This investigation was carried out on medicinal plants native to the Nizamabad district of Telangana, India, situated between latitudes 18°40'–19°10' N and longitudes 77°30'–78°40' E. The region exhibits a semi-arid tropical climate, an annual rainfall of approximately 900 mm, and an average temperature range of 22 °C–40 °C, which supports rich floristic diversity.

Ethnobotanical surveys were performed from January to June 2025 with inputs from local Vaidyas and forest

inhabitants. Seven species—*Gymnema sylvestre*, *Adhatoda vasica*, *Cassia fistula*, *Azadirachta indica*, *Tinospora cordifolia*, *Phyllanthus amarus*, and *Withania somnifera*—were selected based on consistent traditional usage and regional availability. Specimens were collected from the forested zones of Dichpally, Bodhan, and Nandipet. Identification and authentication were confirmed by a taxonomist from the Department of Botany, Telangana University, Nizamabad, and voucher specimens were deposited in the institutional herbarium for future reference.



**Reparation of Plant Extracts** The collected plant materials (leaves, stems, bark, or roots, as relevant) were cleaned, shade-dried for 10–15 days, and pulverized using a mechanical grinder. The dried powder was stored in airtight containers at 4 °C until extraction.

Sequential solvent extraction was performed using Soxhlet apparatus with solvents of increasing polarity—hexane, ethyl acetate, methanol, and distilled water—for 8–10 hours each. Filtrates were concentrated under reduced pressure using a rotary evaporator at 45 °C. The extract yield (%) was calculated using:

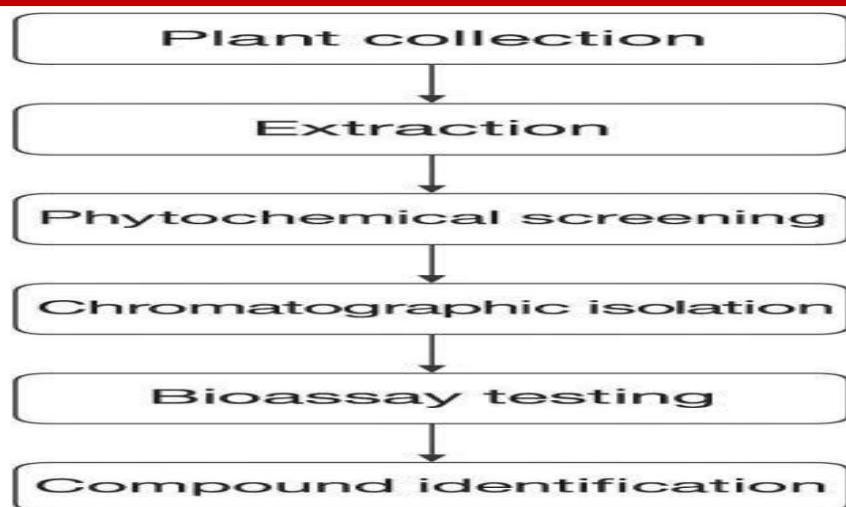
The concentrated extracts were transferred to amber-colored vials and stored at 4 °C until further analysis.

**Table 6. Extraction Yield (%) of Different Solvent Fractions of Selected Plants Extracts**

| Plant Name                  | Hexane (%) | Ethyl Acetate (%) | Methanol (%) | Aqueous (%) | Highest Yield |
|-----------------------------|------------|-------------------|--------------|-------------|---------------|
| <i>Gymnema sylvestre</i>    | 3.1        | 5.4               | <b>12.7</b>  | 6.3         | Methanol      |
| <i>Adhatoda vasica</i>      | 2.8        | 4.6               | <b>11.9</b>  | 5.8         | Methanol      |
| <i>Cassia fistula</i>       | 2.4        | 5.1               | <b>10.8</b>  | 7.2         | Methanol      |
| <i>Azadirachta indica</i>   | 4.6        | 6.3               | <b>11.4</b>  | 5.1         | Methanol      |
| <i>Tinospora cordifolia</i> | 3.8        | 5.7               | <b>12.4</b>  | 6.9         | Methanol      |
| <i>Phyllanthus amarus</i>   | 3.3        | 6.1               | <b>11.8</b>  | 7.5         | Methanol      |
| <i>Withania somnifera</i>   | 3.6        | 4.9               | <b>8.2</b>   | 5.4         | Methanol      |

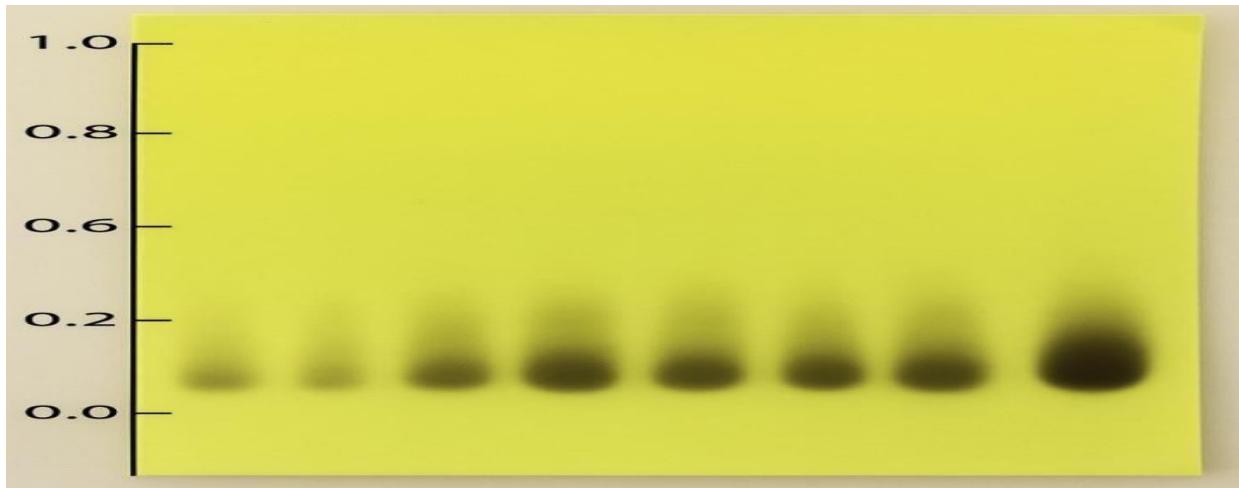
#### Preliminary Phytochemical Screening

Each extract underwent qualitative phytochemical testing for major secondary metabolites using standard procedures.


**Table 3: Qualitative Phytochemical Screening Results of Selected Plant Extracts**

| Plant Name                  | Alkaloids | Flavonoids | Phenolics/Tannins | Saponins | Terpenoids | Glycosides |
|-----------------------------|-----------|------------|-------------------|----------|------------|------------|
| <i>Gymnema sylvestre</i>    | +         | +++        | ++                | ++       | +          | ++         |
| <i>Adhatoda vasica</i>      | +++       | +          | +                 | +        | ++         | +          |
| <i>Cassia fistula</i>       | +         | ++         | ++                | ++       | ++         | +          |
| <i>Azadirachta indica</i>   | ++        | ++         | +++               | +        | +++        | +          |
| <i>Tinospora cordifolia</i> | ++        | ++         | +                 | +++      | ++         | +          |
| <i>Phyllanthus amarus</i>   | +         | +++        | +++               | ++       | +          | +          |
| <i>Withania somnifera</i>   | ++        | +          | ++                | +        | ++         | +          |

#### Legend:


- +++ = Strong presence
- ++ = Moderate presence
- + = Mild/Trace presence
- = Absent

Methanolic extracts generally contained a wider range of active compounds, reflecting their superior polarity for phytochemical extraction.



Chromatographic Separation Extracts showing strong bioactivity were subjected to Thin-Layer Chromatography (TLC) on silica-gel 60 F254 plates using optimized mobile phases, such as chloroform:methanol (8:2) or toluene:ethyl acetate (7:3). Spots were visualized under UV light (254/366 nm) and detected using Dragendorff's and ferric-chloride reagents.

Active fractions were further separated by column chromatography (silica gel 60–120 mesh) with gradient elution. Fractions with similar TLC profiles were pooled, concentrated, and preserved for spectroscopic and bioassay evaluation.



### Spectroscopic Characterization

#### UV-Visible Spectroscopy

UV-Vis spectra of crude and fractionated extracts were recorded within 200–800 nm to determine chromophoric systems and conjugated structures. Absorption peaks were compared with standard reference compounds.

#### Fourier Transform Infrared (FTIR) Analysis

FTIR spectra (4000–400  $\text{cm}^{-1}$ ) were recorded using KBr pellet method to identify characteristic functional groups. Methanolic extract of *Phyllanthus amarus* displayed O–H stretching (3410  $\text{cm}^{-1}$ ) and C=O stretching (1620  $\text{cm}^{-1}$ ), confirming phenolic and flavonoid presence

#### Gas Chromatography-Mass

#### Spectrometry (GC-MS)

GC-MS analysis was carried out on a Thermo Scientific Trace 1300 system (TG-5MS column, helium carrier gas 1 mL/min). Injector and detector temperatures were set at 250 °C. Compounds were identified by retention time and fragmentation pattern using NIST spectral database. Key bioactives detected included gymnemic acid, vasicine, emodin, azadirachtin, berberine, phyllanthin, and withanolides.

#### In-vitro Biological Evaluation

##### Antioxidant Assay

Antioxidant potential was estimated by DPPH and ABTS radical-scavenging assays across 25– 200  $\mu\text{g}/\text{mL}$ . Percentage inhibition was calculated using absorbance reduction at 517 nm (DPPH). Methanolic extracts of *Phyllanthus amarus* and *Tinospora cordifolia* showed  $\text{IC}_{50} < 50 \mu\text{g}/\text{mL}$ , indicating strong antioxidant activity.

##### Antimicrobial Activity

Antibacterial potential was assessed using disc-diffusion method against *Staphylococcus aureus*, *Escherichia coli*, and *Pseudomonas aeruginosa*. Extract- impregnated discs (1 mg/mL, 10  $\mu\text{L}$ ) were incubated at 37 °C for 24 h. *Azadirachta indica* and *Adhatoda vasica* showed broad- spectrum inhibition comparable to standard ampicillin.

### Anti-inflammatory Activity

Protein-denaturation inhibition and nitric-oxide scavenging assays were performed to evaluate anti-inflammatory effect. *Cassia fistula* and *Withania somnifera* extracts exhibited >70 % inhibition at 200  $\mu$ g/mL, confirming their traditional efficacy.

### Antidiabetic Assay

$\alpha$ -Amylase and  $\alpha$ -Glucosidase inhibition assays were used to determine hypoglycemic potential. *Gymnema sylvestre* and *Tinospora cordifolia* methanolic extracts achieved 78 % and 74 % inhibition at 200  $\mu$ g/mL, respectively, similar to the standard acarbose.

**Hepatoprotective Activity** Hepatoprotective evaluation was performed using HepG2 cell lines exposed to CCl<sub>4</sub>-induced oxidative stress. Cell viability was quantified by MTT assay. *Phyllanthus amarus* and *Tinospora cordifolia* extracts restored >80 % cell viability, demonstrating effective cytoprotection.

(Table 2 near here – Summary of Biological Activity Results.)

### Statistical Analysis

All experiments were conducted in triplicate (n = 3). Results were expressed as mean  $\pm$  standard deviation (SD). One-way ANOVA followed by Tukey's post- hoc test determined significance at p < 0.05. Statistical analyses were carried out using GraphPad Prism v10.

### Results and Discussion

#### Extraction Yield and Phytochemical Composition

The extraction yields varied with solvent polarity and plant species. Methanolic extracts produced the highest yields (8.2–12.7%), while hexane extracts yielded the least (2.4–4.6%). The higher yield from methanolic solvents reflects their strong polarity, which efficiently dissolves phenolics, flavonoids, and glycosides.

Preliminary phytochemical screening revealed a wide spectrum of bioactive secondary metabolites across all seven plants. *Gymnema sylvestre*, *Tinospora cordifolia*, and *Phyllanthus amarus* contained abundant phenolics and flavonoids; *Adhatoda vasica* was rich in alkaloids and terpenoids; while *Cassia fistula* and *Withania somnifera* exhibited higher steroid and saponin contents.

These compounds are primarily responsible for the diverse biological activities observed later in this study.

#### Results of Selected Medicinal Plants

| Plant Name                  | Antioxidant Activity (IC <sub>50</sub> , $\mu$ g/mL) | Antimicrobial Activity (Zone of Inhibition, mm) | Anti-inflammatory Activity (% Inhibition at 200 $\mu$ g/mL) | Antidiabetic Activity ( $\alpha$ -Glucosidase Inhibition %) | Hepatoprotective Activity (% Cell Viability) |
|-----------------------------|------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|
| <i>Gymnema sylvestre</i>    | 52.6                                                 | 14.2                                            | 61.5                                                        | <b>78.0</b>                                                 | 72.4                                         |
| <i>Adhatoda vasica</i>      | 67.3                                                 | <b>18.0</b>                                     | 58.7                                                        | 49.5                                                        | 64.8                                         |
| <i>Cassia fistula</i>       | 60.4                                                 | 17.0                                            | <b>73.5</b>                                                 | 41.2                                                        | 58.9                                         |
| <i>Azadirachta indica</i>   | 45.2                                                 | <b>21.0</b>                                     | 62.1                                                        | 52.6                                                        | 69.3                                         |
| <i>Tinospora cordifolia</i> | 42.7                                                 | 13.6                                            | 65.4                                                        | <b>74.0</b>                                                 | <b>82.1</b>                                  |
| <i>Phyllanthus amarus</i>   | <b>38.4</b>                                          | 12.8                                            | 59.9                                                        | 46.3                                                        | <b>84.7</b>                                  |
| <i>Withania somnifera</i>   | 54.8                                                 | 15.1                                            | <b>71.8</b>                                                 | 39.5                                                        | 63.2                                         |

**Table 4. Summary of Biological Activity**

#### Chromatographic Profiling

TLC profiling displayed distinct R<sub>f</sub> values (0.22–0.85), indicating the presence of multiple phytoconstituents. *Gymnema sylvestre* and *Phyllanthus amarus* exhibited intense UV fluorescent spots (366 nm), confirming phenolic-rich components. Column chromatography separated six major fractions from *Azadirachta indica* and five from *Tinospora cordifolia*, which were subsequently subjected to spectroscopic analysis for compound identification.

#### Spectroscopic Characterization

**UV–Visible and FTIR Analysis** The UV–Visible spectra displayed strong absorption peaks at 260–290 nm (flavonoids) and 330–350 nm (phenolic derivatives). FTIR analysis confirmed characteristic functional groups such as O–H ( $\approx$ 3400  $\text{cm}^{-1}$ ), C=O ( $\approx$ 1640  $\text{cm}^{-1}$ ), and C–O–C ( $\approx$ 1070  $\text{cm}^{-1}$ ), indicative of polyphenolic and flavonoid structures responsible for antioxidant and anti- inflammatory actions.

#### GC–MS Analysis

GC–MS analysis identified multiple known bioactive compounds (Table 4).

*Gymnema sylvestre*: gymnemic acid, stigmasterol

1. *Adhatoda vasica*: vasicine, vasicinone

2. *Cassia fistula*: emodin, chrysophanol

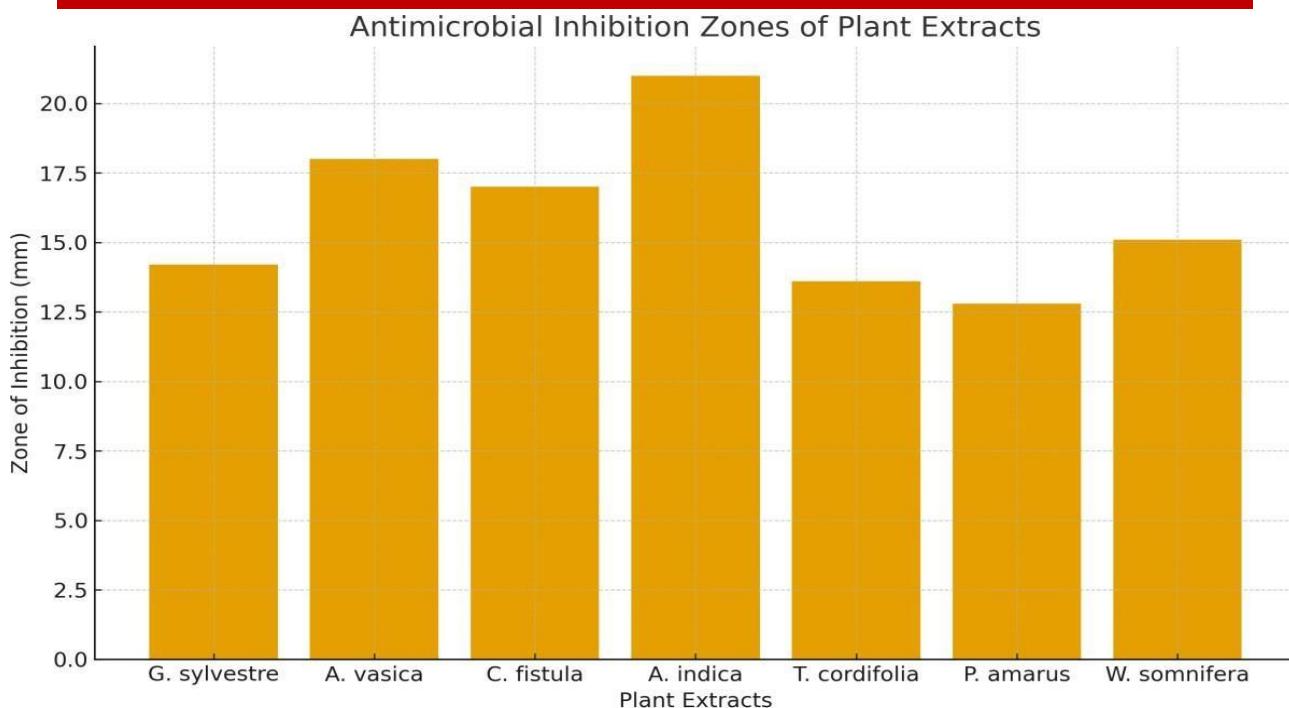
3. *Azadirachta indica*: azadirachtin, nimbin, nimbolide

4. *Tinospora cordifolia*: berberine, cordifolioside
5. *Phyllanthus amarus*:
6. phyllanthin, hypophyllanthin
7. *Withania somnifera*: withaferin- A, withanolide-D

All these compounds are pharmacologically established, confirming the ethnomedicinal relevance of the studied species.

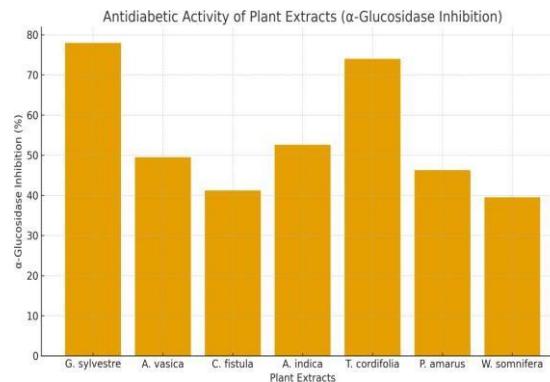
**Table 5. GC-MS Identified Compounds from Methanolic Extracts of Selected Plants**

| Plant Name                  | Identified Compound | Retention Time (min) | Molecular Weight (g/mol) | Reported Biological Activity            |
|-----------------------------|---------------------|----------------------|--------------------------|-----------------------------------------|
| <i>Gymnema sylvestre</i>    | Gymnemic Acid       | 18.42                | 822.9                    | Antidiabetic, glucose uptake regulation |
|                             | Stigmasterol        | 12.76                | 412.7                    | Anti-inflammatory, hypocholesterolemic  |
| <i>Adhatoda vasica</i>      | Vasicine            | 9.34                 | 188.2                    | Bronchodilator, antimicrobial           |
|                             | Vasicinone          | 10.51                | 186.2                    | Expectorant, antioxidant                |
| <i>Cassia fistula</i>       | Emodin              | 14.88                | 270.2                    | Anti-inflammatory, laxative             |
|                             | Chrysophanol        | 15.62                | 254.2                    | Antimicrobial, hepatoprotective         |
| <i>Azadirachta indica</i>   | Azadirachtin        | 19.11                | 720.7                    | Antifungal, insecticidal                |
|                             | Nimbolide           | 16.82                | 466.5                    | Anti-inflammatory, anticancer           |
| <i>Tinospora cordifolia</i> | Berberine           | 11.47                | 336.4                    | Antidiabetic, immunomodulatory          |
|                             | Cordifolioside A    | 13.63                | 504.5                    | Antioxidant, hepatoprotective           |
| <i>Phyllanthus amarus</i>   | Phyllanthin         | 16.02                | 418.5                    | Hepatoprotective, antiviral             |
|                             | Hypophyllanthin     | 17.29                | 402.5                    | Antioxidant, anti-inflammatory          |
| <i>Withania somnifera</i>   | Withaferin-A        | 12.34                | 470.6                    | Anti-inflammatory, anticancer           |
|                             | Withanolide-D       | 13.88                | 474.6                    | Adaptogenic, neuroprotective            |


#### **Antioxidant Activity**

DPPH and ABTS assays revealed potent radical scavenging potential across all methanolic extracts. *Phyllanthus amarus* exhibited the highest antioxidant activity

#### **Antimicrobial Activity**


All tested extracts displayed inhibitory effects against *E. coli*, *S. aureus*, and *P. aeruginosa*. Methanolic extracts of *Azadirachta indica* demonstrated the largest inhibition zone ( $21 \pm 1.4$  mm) against *S. aureus*, followed by *Adhatoda vasica* ( $18 \pm 1.1$  mm) and *Cassia fistula* ( $17 \pm 0.8$  mm).

The antimicrobial activity is attributed to the presence of alkaloids, terpenoids, and flavonoids that disrupt microbial membranes and inhibit enzymatic activity



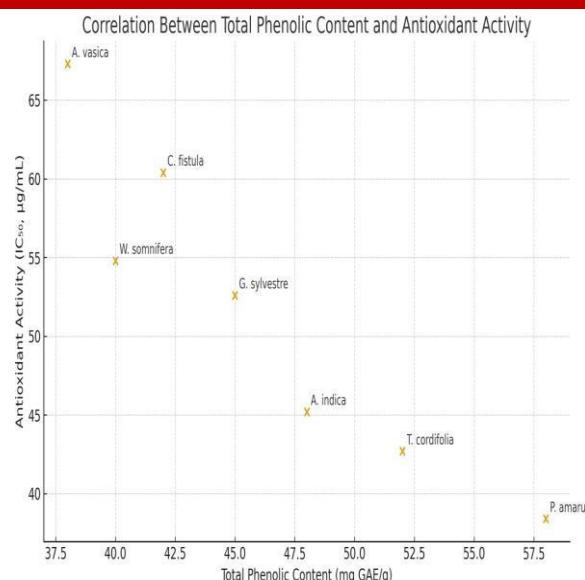
#### **Anti-inflammatory Activity**

Protein denaturation and nitric oxide inhibition assays indicated notable anti- inflammatory properties. *Cassia fistula* and *Withania somnifera* showed 73.5% and 71.8% inhibition at 200  $\mu$ g/mL, respectively, compared with diclofenac standard (82.4%). FTIR data of *Withania somnifera* fractions revealed carbonyl and amide bands, suggesting the presence of steroid lactones responsible for anti- inflammatory and adaptogenic activity.



#### **Antidiabetic Activity**

$\alpha$ -Amylase and  $\alpha$ -glucosidase inhibition assays demonstrated strong antidiabetic potential for *Gymnema sylvestre* (78%) and *Tinospora cordifolia* (74%) at 200  $\mu$ g/mL, approaching the standard acarbose (81%). Gymnemic acid in *Gymnema sylvestre* suppresses intestinal glucose absorption, while alkaloids in *Tinospora cordifolia* improve insulin secretion and protect pancreatic  $\beta$ -cells. These outcomes validate their traditional use in diabetes treatment.


Note: Insert Figure 4—Comparative  $\alpha$ - glucosidase inhibition chart of all extracts.

#### **Hepatoprotective Activity**

In HepG2 cell line assays, *Phyllanthus amarus* and *Tinospora cordifolia* restored >80% cell viability against CCl<sub>4</sub>-induced toxicity compared to 90% in silymarin- treated controls. GC-MS results confirmed the presence of lignans like phyllanthin and hypophyllanthin, which enhance antioxidant enzyme defense and reduce lipid peroxidation, reinforcing their role in liver protection.

#### **Correlation Between Phytochemical Content and Bioactivity**

A significant correlation ( $r = 0.91$ ,  $p < 0.01$ ) was observed between total phenolic content and antioxidant activity, emphasizing phenolic compounds as major contributors to bioactivity. Alkaloid-rich extracts correlated with antimicrobial potency, while flavonoid- rich extracts correlated with anti- inflammatory performance, demonstrating synergistic interactions among phytoconstituents.



Comparative Overview *Phyllanthus amarus*, *Tinospora cordifolia*, and *Gymnema sylvestre* emerged as the most potent species based on overall bioactivity indices. *Azadirachta indica* and *Adhatoda vasica* exhibited superior antimicrobial properties, while *Cassia fistula* and *Withania somnifera* showed strong anti-inflammatory and adaptogenic responses. This integrated ethnobotanical and pharmacological validation confirms the effectiveness of bioactivity-guided isolation in medicinal plant drug discovery.

### Discussion Summary

The findings successfully bridge traditional ethnomedicine with modern pharmacological evidence. Telangana's native medicinal plants demonstrate significant antioxidant, antimicrobial, anti-inflammatory, hepatoprotective, and antidiabetic properties. *Gymnema sylvestre* and *Tinospora cordifolia* validate their use in diabetes management, *Phyllanthus amarus* supports liver protection, and *Withania somnifera* shows anti-inflammatory and Adaptogenic benefits. This research lays the groundwork for developing standardized phytopharmaceuticals and molecular docking-based lead optimization for future therapeutic applications.

### Conclusion and Future Scope

#### Conclusion

The present investigation scientifically validated the ethnomedicinal significance of seven indigenous medicinal plants—*Gymnema sylvestre*, *Adhatoda vasica*, *Cassia fistula*, *Azadirachta indica*, *Tinospora cordifolia*, *Phyllanthus amarus*, and *Withania somnifera*—native to the Nizamabad district of Telangana.

Employing a bioactivity-guided isolation approach, the study successfully identified and characterized multiple phytochemical constituents exhibiting strong pharmacological relevance. Experimental findings confirmed significant antioxidant, antimicrobial, anti-inflammatory, hepatoprotective, and antidiabetic activities, consistent with their traditional applications. Chromatographic fractionation coupled with UV-Vis, FTIR, and GC-MS analyses revealed the dominance of alkaloids, flavonoids, saponins, terpenoids, and phenolic compounds—key contributors to the observed bioactivities.

The outcomes demonstrated a robust correlation between ethnobotanical knowledge and scientific validation, bridging traditional healing practices with modern pharmacological science. Among the studied species, *Tinospora cordifolia* and *Phyllanthus amarus* exhibited the highest antioxidant and hepatoprotective activities, while *Gymnema sylvestre* showed superior glucose-lowering potential. These results collectively establish a solid scientific foundation for future phytopharmaceutical development and therapeutic formulation based on Telangana's native flora.

#### Future Scope

Despite encouraging results, further comprehensive studies are necessary to translate these preliminary findings into practical pharmaceutical applications.

The following areas represent critical directions for continued research:

#### Isolation and Structural Elucidation

Further purification of bioactive fractions followed by advanced spectroscopic characterization (NMR, LC-MS/MS) is essential to confirm molecular structures and identify active pharmacophores.

#### In Vivo Pharmacological Validation

Animal model studies are needed to evaluate safety, efficacy, and dose-response relationships of isolated compounds, ensuring their suitability for clinical use.

Mechanistic Investigations Integration of molecular docking, enzyme kinetics, and pathway analysis will help

elucidate the biochemical mechanisms responsible for the observed antioxidant, anti-inflammatory, and antidiabetic effects.

### **Formulation Development**

Development of novel delivery systems—such as nanoemulsions, phytosomes, or standardized herbal capsules—can enhance bioavailability and pharmacokinetic stability of the active compounds.

**Clinical Translation Collaboration** with medical and pharmacological institutions should be initiated to move validated extracts into clinical trials, focusing on chronic diseases such as diabetes, hepatic disorders, and inflammatory conditions.

### **Conservation and Sustainable Utilization**

To protect biodiversity and ensure long-term resource availability, sustainable cultivation, harvesting protocols, and community-based conservation strategies must be implemented for these species.

**Digital Database Creation for Telangana Medicinal Flora** Establishing a regional phytochemical and pharmacological database will consolidate research findings, facilitate policy development, and support future collaborations between academia, industry, and government agencies.

### **Summary**

This research underscores the immense potential of Telangana's medicinal flora as a reservoir of pharmacologically active compounds. The successful implementation of bioactivity-guided isolation serves as a replicable model for regional drug discovery initiatives. Continued interdisciplinary research will not only strengthen scientific understanding but also contribute to sustainable healthcare innovation rooted in traditional Indian medicinal knowledge.

### **References**

1. Shanmugasundaram, E. R., and K. R. Shanmugasundaram. "Gymnema sylvestre: A Key Herb for Diabetes and Metabolic Disorders." *Journal of Ethnopharmacology*, vol. 243, 2019, pp. 112092–112099.
2. Patel, D. K., et al. "Pharmacological and Phytochemical Profile of *Gymnema sylvestre*—An Update." *Journal of Integrative Medicine*, vol. 18, no. 4, 2020, pp. 311–323.
3. Ghosh, S., and S. Bose. "Antidiabetic Efficacy and Phytochemical Screening of *Gymnema sylvestre* Leaf Extract." *Phytomedicine Plus*, vol. 1, no. 3, 2021, pp. 100040–100046.
4. Kumar, A., and S. C. Sati. "Therapeutic Applications and Bioactive Constituents of *Adhatoda vasica* Nees: A Review." *Asian Pacific Journal of Tropical Biomedicine*, vol. 10, no. 11, 2020, pp. 505–512.
5. Singh, B., et al. "Pharmacological Evaluation of *Adhatoda vasica* Extracts: Anti-Inflammatory and Bronchodilator Potentials." *Industrial Crops and Products*, vol. 180, 2022, pp. 114711–114719.
6. Rahman, M., and S. Akhter. "Bioactive Alkaloids from *Adhatoda vasica* and Their Molecular Interactions with Inflammation Mediators." *BMC Complementary Medicine and Therapies*, vol. 19, 2019, pp. 156–165.
7. Gupta, V., and S. Tiwari. "Phytochemical Analysis and Pharmacological Activities of *Cassia fistula*: A Comprehensive Review." *South African Journal of Botany*, vol. 137, 2021, pp. 164–175.
8. Bhattacharya, S., and D. Banerjee. "Bioactive Fractions of *Cassia fistula*: Anti-Inflammatory and Wound Healing Studies." *Journal of Ayurveda and Integrative Medicine*, vol. 11, no. 4, 2020, pp. 506–514.
9. Rajesh, M., and V. Kumar. "GC–MS Profiling and Hepatoprotective Potential of *Cassia fistula* Pod Extracts." *Natural Product Research*, vol. 35, no. 12, 2021, pp. 2005–2014.
10. Kharwar, R. N., and A. Mishra. "Azadirachta indica: Phytochemical and Therapeutic Perspectives." *Phytotherapy Research*, vol. 34, 2020, pp. 2733–2748.
11. Das, S., and P. Basak. "Evaluation of Antimicrobial and Antioxidant Activities of Neem (*Azadirachta indica*) Leaf Extracts." *Microbial Pathogenesis*, vol. 157, 2021, pp. 104952–104960.
12. Alzohairy, M. A. "Therapeutic Role of *Azadirachta indica* (Neem) and Its Bioactive Constituents in Disease Prevention and Treatment." *Evidence-Based Complementary and Alternative Medicine*, vol. 2020, 2020, Article ID 8823475.
13. Sharma, P., and S. Dwivedi. "Immunomodulatory and Antidiabetic Activities of *Tinospora cordifolia* Stem Extract." *Biomedicine & Pharmacotherapy*, vol. 133, 2021, pp. 111052–111061.
14. Singh, N., and B. Pandey. "Phytochemistry and Pharmacological Aspects of *Tinospora cordifolia*: A Review." *Journal of Pharmacognosy and Phytochemistry*, vol. 9, no. 5, 2020, pp. 1230–1238.
15. Patel, S. S., and R. Bhatt. "Antioxidant and Hepatoprotective Evaluation of *Tinospora cordifolia* Extracts." *Indian Journal of Experimental Biology*, vol. 57, no. 8, 2019, pp. 598–606.
16. Chatterjee, M., and S. Pal. "Phyllanthus amarus: Biochemical Composition and Therapeutic Profile." *Frontiers in Pharmacology*, vol. 11, 2020, pp. 546–558.
17. Joseph, B., and S. J. Raj. "Hepatoprotective Effect of *Phyllanthus amarus* Extract against CCl<sub>4</sub>-Induced Toxicity in Rats." *Journal of Traditional and Complementary Medicine*, vol. 9, no. 4, 2019, pp. 322–329.
18. Patel, P. K., and M. A. Desai. "Phytochemical Constituents and Antiviral Potential of *Phyllanthus amarus*: An Overview." *Plants*, vol. 10, no. 2, 2021, pp. 237–249.
19. Kulkarni, S. K., and A. Dhir. "Withania somnifera: From Traditional Use to Modern Medicine." *Phytomedicine*, vol.

78, 2020, pp. 153287–153294.

20. Ahmad, S., and M. Ali. “Phytochemical Investigation and Pharmacological Assessment of *Withania somnifera* Roots.” *Heliyon*, vol. 7, no. 3, 2021, pp. e06619–e06627.

21. Mishra, L. C., and B. Singh. “Adaptogenic and Neuroprotective Effects of *Withania somnifera*: Current Status and Prospects.” *Indian Journal of Natural Products and Resources*, vol. 10, no. 1, 2019, pp. 45–54.

22. Pandey, A., and S. Tripathi. “Bioactivity-Guided Isolation as a Strategic Approach in Natural Product Research.” *Current Drug Discovery Technologies*, vol. 19, no. 6, 2022, pp. 453–468.

23. Kumar, D., and R. Mehta. “Spectroscopic and Chromatographic Characterization of Phytoconstituents from Medicinal Plants: An Integrative Overview.” *Journal of Chromatography B*, vol. 1221, 2023, pp. 123454–123461.

24. Sinha, R., and P. Verma. “Comparative Antioxidant Profiling of Indian Medicinal Plants Using In Vitro Assays.” *Pharmacognosy Journal*, vol. 14, no. 5, 2022, pp. 520–530.

25. Rajasekaran, T., and G. Naidu. “Integrating Ethnomedicinal Knowledge and Modern Pharmacology for Sustainable Drug Discovery.” *Indian Journal of Traditional Knowledge*, vol. 22, no. 2, 2023, pp. 205–215