

Perceived coerciveness, intellectual capital, and social capital on academic information system adoption

Intan Dzikria^{1*}, Pandunata Syakurta Gansa², Mei Maharani³

^{1,3} Department of Information System and Technology, Universitas 17 Agustus 1945 Surabaya, Indonesia

² Department Informatics Engineering, Universitas 17 Agustus 1945 Surabaya, Indonesia

*Corresponding Author: intandzikria@untag-sby.ac.id

Abstract— Academic information systems play a crucial role in managing academic data and rely heavily on users' knowledge, social environment, and willingness to adopt the system. This study aims to investigate the role of intellectual capital, social capital, and social influence on students' behavioral intention to use and the usage behavior of the system, as shown in the Unified Theory of Acceptance and the Use of Technology, while also assessing the effect of perceived coerciveness in these relationships. This study collected 200 data from university students in Indonesia. Partial Least Squares Structural Equation Modeling was utilized to analyze the research model. The results show that intellectual capital, social capital, and social influence positively determine behavioral intention, which subsequently determines the use behavior of the academic information system. However, perceived coerciveness was found to have no significant effect on either behavioral intention or usage behavior. Intellectual capital and social capital were shown to reduce perception to coercion, whereas social influence increases it. These findings highlight the importance of fostering knowledge-sharing environments and strengthening user competencies rather than relying on coercive measures.

Keywords— Academic Information System, Intellectual Capital, Social Capital, Perceived Coerciveness, Unified Theory of Acceptance and Use of Technology

Academic Information System plays a significant role in a university data management, such as course registration, assessment management and communication between students, lecturers, and academic staffs. University students are enforced to use a specific academic information system utilized in the university to support their academic endeavors. The effectiveness of the use of such systems depends not only by technology factors, but also on its users' knowledge, readiness, and willingness to adopt the system. [1] stated that knowledge that is supported by social capital can increase organization performance and collaborative learning. Similarly, models like the unified theory of acceptance and use of technology (UTAUT) helps understanding factors affecting technology adoption [2], based on the performance expectancy, effort expectancy, social influence, and facilitating conditions [3].

In a university environment, using an academic information is often mandatory for academic purposes. It is an institutional mandates can introduce a new dimension in technology adoption, which is perceived coerciveness. Coercive can fasten technology adoption [4]. However, the role in shaping behavioral intention to use and the use behavior of an academic information system remains ambiguous., especially in an environment where students depends on the system regardless their readiness. Prior studies have found that pressures can influence technology adoption [5], but it is still unclear whether perceived coerciveness affects the use of academic information system to sustain user engagement in academic context.

Although various studies have addressed these factors, several significant gaps remain. There is a knowledge disparities among students, lecturers, and administrative staff that impacts the optimization of academic information system [6]. Although social capital and social influence are considered important in organizational collaboration, research examining the role of social relationships in the context of academic information system is still limited. Moreover, although intellectual capital has been link to technology use [7], its influence within academic information system environment requires further investigation. Finally, existing literatures rarely addresses the interaction between social capital, intellectual capital, and perceived coerciveness within an extended UTAUT framework.

The purpose of this study is to investigate how students' behavioral intention and actual use of academic information systems are influenced by intellectual capital, social capital, and social influence. It also looks into whether perceived coerciveness has an impact on these relationships. It is anticipated that the results of this study will advance both theory and practice. By adding social and intellectual capital to the UTAUT model and examining the understudied factor of perceived coerciveness, the study theoretically enhances the literature on technology adoption. Practically speaking, the study's findings should provide higher education institutions with some direction for creating academic information system platforms that improve knowledge exchange, create encouraging social environments, and lessen needless coercive pressures.

I. LITERATURE REVIEW

Academic information system is an academic data management system in higher education, including student and lecturer information, class schedules, grades, and academic administration. This system facilitates interaction between students, lecturers, and administration, and provides a platform for grade, course, and attendance management.

[1] stated that user knowledge of academic information systems, both technical and academic, contributes to system performance. This knowledge, influenced by social capital, enables better collaboration between users, thus supporting effective use of the academic information system. Moreover, [7] stated that user comfort with the academic information system interface and features significantly influences system usage. Technological advancements have advanced the academic information system with the addition of features such as academic performance monitoring, e-learning, and online document management. [8] emphasized that information systems can improve organizational efficiency by providing timely and accurate information, which then can increase user satisfaction and user loyalty.

Social capital refers to the value of social relationships, networks, trust, and norms that facilitate collaboration within a society [9], [10], [11]. In an organizational context, social capital strengthens communication and cooperation, increasing the effectiveness of collaboration between individuals or groups. Meanwhile, intellectual capital encompasses the knowledge, experience, and skills possessed by individuals or organizations, which are used to create value and competitiveness [12].

Research shows that these two concepts interact closely in improving organizational performance. Social capital supports knowledge exchange through strong social networks, which in turn enhances intellectual capital [9]. A study by [13] confirmed that the combination of these two capitals drives innovation and adaptation in organizations. [10] also found that intellectual capital is the primary factor in the intention to use technology, followed by social capital.

In higher education, social capital involves relationships between students, lecturers, and administrative staff that support collaboration and the use of technologies such as an academic information system. [9] identified three dimensions of social capital, including the structural dimension (patterns of relationships), the relational dimension (trust and norms), and the cognitive dimension (shared representations). These dimensions may contribute to the creation of an environment that supports effective collaboration and knowledge exchange in the use of academic information systems. Research by [1] confirmed that positive social relationships accelerate technology adoption, improve user understanding, and optimize the use of an organization's support system, which in this study is academic information systems in higher education institutions.

Intellectual capital comprises the skills, knowledge, and experience of individuals within an organization that contribute to its competitiveness and innovation [12]. Intellectual capital is believed to be derived from social capital [9], [10]. Social capital influences the development of intellectual by combination and exchange [9]. For the knowledge-based institution, for instance, higher education, intellectual capital is more important than physical capital, because it stresses the importance of knowing the knowledge [10].

[10] stated in their study that social capital, through the social network and trust between individuals, can increase the intention to use a system. Academic information systems involve individuals who communicate and collaborate for academic purposes. Thus, this study believes that (H1) social capital positively influences intention to use an academic information system, as shown in Fig.1.

Moreover, intellectual capital is defined as "Knowledge and knowing capability of social collectivity, such as organization, intellectual community, or professional practice" [9]. A higher education institution is a unique place where not only intellectuals can collaborate, but also perform professional practice. The knowledge and knowing capabilities of social collectivity are then shared in an academic information system for academic knowledge-sharing purposes. A prior study [10] found that there is a positive influence between intellectual capital and the intention to use an academic system. Therefore, this study believes that (H3) intellectual capital positively influences the behavioral intention to use an academic information system.

Moreover, social influences from peers and teachers in university are seen as important for the use of any systems in the university. The Unified Theory of Acceptance and Use of Technology (UTAUT) model states that social influence is "a degree to which students perceive that important others believe they should use a system in their studies." [14]. Meanwhile, behavioral intention is defined as "the degree to which a person has formulated conscious plans regarding whether to perform a specified future behavior" [15]. Social influence has been proven by many prior studies about UTAUT to have a positive influence on behavioral intention, which in turn positively influences use behavior [14]. Thus, this study believes that (H5) social influence may positively determine behavioral intention and (H8) behavioral intention to use behavior.

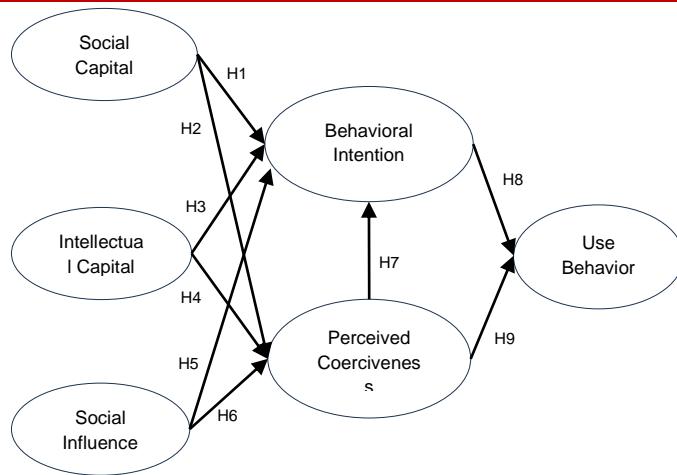


Fig. 1 Structural equation model

In a university environment, the use of an academic information system is somewhat coerced by university management on students. Although the purpose is to enhance academic collaboration, the coerciveness is still perceived because if students do not use the system, then they cannot manage their courses, assignments, and grades. [16] stated that social influence from the dimension of social capital can decrease perception toward coerciveness, especially in the regulation compliance context. Thus, this study believes that (H2) social influence may negatively influence perceived coerciveness.

Additionally, intellectual capital is believed in this study to negatively determine perceived coerciveness (H4). [17] stated that dimensions from intellectual capital, such as human capital and structural capital, have roles in increasing individual readiness in dealing with external pressure, like a coercive regulation.

However, social influence from peers may strengthen perception towards coercive forces, which force individuals to follow regulations [18]. Thus, this study believes that (H6) social influence may positively determine perceived coerciveness.

Perceived coerciveness toward the use of the academic information system is part of the regulatory perception. [5] found that external pressure, such as institutional regulation, can influence the intention to use and adopt a technology, although the users are not fully ready to adopt. Students are forced in a way to use the system for their academic purposes, whether they are ready or not, once they enter the university environment. Moreover, the perceived coerciveness was also found to have a significant influence on the use behavior of a technology, especially in the connectivist culture where regulatory compliance is considered important [19]. Therefore, this study believes that (H7) perceived coerciveness may positively influence behavioral intention to use, and (H8) may positively influence the use of an academic information system.

II. METHODOLOGY

A. Measurement of the Study

This study aims to investigate the influence of social capital and intellectual capital through perceived coerciveness to the use of an academic information system while integrating the unified theory of acceptance and the use of technology (UTAUT) constructs into the research model, as shown in Figure 1. The determinants of this study are social capital, intellectual capital, and social influence, which are hypothesized to determine behavioral intention and perceived coerciveness, which then influence the use behavior of an academic information system. This study performed a quantitative exploratory study and confirmatory factor analysis to understand the statistical influence between determinants.

A five-point Likert scale questionnaire was designed to collect data samples. The questionnaire comprises seventeen items which are adapted from a wide range of literature [10], [20], [21], [22], as shown in Table 1. The demographic items included gender, age, and educational degree.

The data sample of this study was collected from 200 Indonesian university students in 2025. A descriptive statistical analysis was performed on the data samples. The data includes 60.5% males and 39.5% females, of whom the majority were college students (72.5%) and under the age of 20 years old (99%).

TABLE I
DESCRIPTIVE MEASUREMENTS

Determinants	Items	Mean	Standard Deviation
Social Capital (SC)	Discussions between students make me learn more effectively.	4.405	0.922
	Knowledge transfer between students makes me learn more effectively.	4.45	0.817
	Combining knowledge among students makes me learn more effectively.	4.405	0.906
Intellectual Capital (IC)	The academic information system is easily accessible	4.34	0.886
	The academic information system has adequate features to support my academic activities.	4.265	0.897
	I have sufficient knowledge on how to use the academic information system effectively.	4.28	0.901
Social Influence (SI)	People around me influence me to use the academic information system.	3.7	1.114
	People close to me recommend using the academic information system.	3.76	1.083
Behavioral Intention (BI)	I intend to use the academic information system in the near future.	3.925	1.034
	I hope that I will use the academic information system in the future.	3.985	0.951
	I anticipate that I will use the academic information system for my academic purposes in the future.	4.18	0.937
Perceived Coerciveness (PC)	Using the academic information system limits my freedom in managing my academic schedule.	2.0	1.131
	I feel I have no control over my academic data in the academic information system.	2.345	1.211
	I trust the academic information system to handle my academic data.	2.11	1.28
Use Behavior (UB)	I use the various features available in the academic information system.	4.17	1.02
	I enjoy using the academic information system for academic purposes at university.	4.165	0.999
	I have used the academic information system frequently.		

B. Data Processing

The data were analyzed using Partial Least Squares tools called SmartPLS 4.0 to perform the quantitative exploratory study (QES) and the confirmatory factor analysis (CFA).

III. RESULTS

A. Reliability and Validity

Table 1 shows the results of the descriptive analysis of the data collected. The data reliability and validity were measured using CFA. [10], [23] suggest criteria of convergent validity, which are that the items' factor loadings should be more than 0.5, the composite reliability should be more than 0.7, and the average variance extracted (AVE) should be more than 0.5. Additionally, the Cronbach's alpha should exceed 0.5 [10]. As shown in Table 2, the results suggest that the data collected are valid and reliable.

TABLE III
RELIABILITY AND CONVERGENT VALIDITY

Items	Factor Loadings	Cronbach's Alpha	Composite Reliability	AVE
BI1	0.834	0.796	0.879	0.709
BI2	0.816			
BI3	0.874			
IC1	0.785	0.779	0.869	0.689
IC2	0.885			
IC3	0.816			
PC1	0.872	0.892	0.929	0.815
PC2	0.946			

PC3	0.889				
SC1	0.929	0.896	0.935		0.828
SC2	0.887				
SC3	0.913				
SI1	0.945	0.823	0.917		0.847
SI2	0.894				
UB1	0.737	0.730	0.834		0.630
UB2	0.927				
UB3	0.697				

This study also measured the discriminant validity of each determinant and its correlation matrix. As shown in Table 3, the square root of AVE was more than the corresponding correlation coefficients. As suggested by [23], the result indicates that the determinants have discriminant validity and are correlated with each other. The result also shows the highest correlation exist between SC and IC, which supports [9]'s study that social capital is the creator of intellectual capital.

TABLE III
DISCRIMINANT VALIDITY

	AVE	BI	IC	PC	SC	SI	UB
BI	0.708	0.842					
IC	0.689	0.538	0.830				
PC	0.815	0.136	0.130	0.903			
SC	0.828	0.471	0.692	0.127	0.910		
SI	0.847	0.400	0.463	0.151	0.373	0.920	
UB	0.744	0.495	0.556	0.149	0.490	0.339	0.793

B. Hypothesis Testing

The structural equation model of this study was then analyzed to measure the path coefficient between determinants. Figure 2 shows the path coefficient of the use of the academic information system, as detailed in Table 4. The results show that out of nine hypotheses, there are five positive influences between determinants. BI was positively influenced by SC, IC, and SI, whereas PC was determined only by IC. Moreover, UB was positively influenced only by BI.

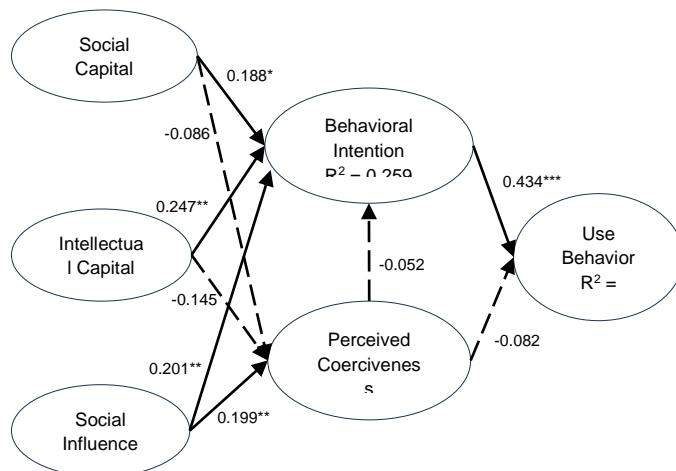


Fig. 2 Path coefficient

TABLE IVII
DISCRIMINANT VALIDITY

Path Coefficient	β	T - value	R^2	Sig
Social Capital -> Behavioral intention	0.188	2.296	0.259	*
Intellectual Capital -> Behavioral Intention	0.247	3.030		**
Social Influence -> Behavioral Intention	0.201	2.903		**
Perceived Coerciveness -> Behavioral Intention	-0.052	0.895		
Social Capital -> Perceived Coerciveness	-0.086	1.029	0.050	
Intellectual Capital -> Perceived Coerciveness	-0.145	1.829		
Social Influence -> Perceived Coerciveness	0.199	2.716		**
Behavioral Intention -> Use Behavior	0.434	5.563	0.201	***
Perceived Coerciveness -> Use Behavior	-0.082	1.162		

The results indicate that users of an academic information system will likely have the intention to use the system if they perceive social capital, intellectual capital, and social influence. There is no indication that users will have the intention to use the system, even if they are coerced to do so, whether by the influence of their peers or by the academic institution. Moreover, when users have an intention to use the system, they will, in turn, use the academic information system for their academic purposes.

Moreover, the results also indicate perceived coerciveness is negatively influenced by social capital ($\beta = -0.086$), as hypothesized. Specifically, as more social capital is perceived by students from its dimensions, the less coerced they are to use an academic information system. Additionally, intellectual capital is also shown to have a negative influence on perceived coerciveness ($\beta = -0.145$). The result proves the hypothesis that the more intellectual capital perceived, the more ready the students will be in handling pressure or coercion.

IV. DISCUSSION

The results of this study show insights into how intellectual capital, social capital, and social influence determine the use of an academic information system, through the behavioral intention to use, which is consistent with the UTAUT framework [14]. The result shows the positive influence of intellectual capital on behavioral intention to use, indicating that students who are confident in their academic skills and have technological skills are more likely to adopt the system more easily. Intellectual capital is a knowledge-based perspective that enhances users' capability to engage with a technology [12], thus their intention to use the system will be easily acknowledged. In the context of an academic environment, students' familiarity with system features, which may come from past experiences, becomes a critical facilitator of system engagement. Social capital has also been proven to have a significant positive effect on behavioral intention. [9] stated that trust, collaboration, and shared norms in social capital can increase system adoption through knowledge exchange. In an academic environment, students collaborate on their tasks and other academic intentions. The collaborative interactions may develop an environment in which using an academic information system will not only become beneficial but also necessary. The tendency to use the system will also increase when they have support from their peers or faculty members. This reinforces the idea that the social context of learning plays an important role in shaping technology usage.

Additionally, social influence had a strong effect on behavioral intention, which is consistent with the UTAUT framework [24]. Interestingly, the result indicates that social influence increased perceived coerciveness. Peer expectations or faculty recommendations may feel less like encouragement and more like a subtle pressure, which is unlikely to be known. This dual role of social influence, support [18] whom suggests that normative forces can be believed as coercive when students interpret them as obligations rather than suggestions. In an academic environment, social influence can easily blur into institutional pressure because of the mandatory system usage.

On the other hand, although coerciveness is often thought to accelerate technology adoption, this study found no significant effect on either behavioral intention or actual system use. The results contrast with a prior study that indicates that coercion can enhance technology uptake [4]. However, the lack of significance suggests that students do not necessarily rely on external pressure when deciding to use the academic information system. This may be because the academic information system is already integrated into essential higher education processes. Thus, system usage becomes habitual, rather than coercion-driven. The students use the system out of necessity and personal benefit rather than compliance with university mandates.

[17] has an idea that well-informed individuals are more resilient to perceived external pressure. The result of this study shows that intellectual and social capital negatively influence perceived coerciveness. Students with adequate knowledge, strong social networks, and better support structures feel less constrained when using an academic

information system. The usage feels self-directed rather than imposed. These findings indicate that institutions should prioritize academic orientation and social support mechanisms rather than imposing top-down mandates if they want to minimize resistance toward mandatory system usage.

The results reinforce the behavioral intention to remain as the strongest determinant of the actual system usage. Meanwhile, perceived coerciveness does not shape system usage behavior in the presence of strong intellectual and social capital. The results indicate that voluntary acceptance is very important in a mandatory academic information system. Therefore, higher education institutions should focus more on building capability and community, rather than enforcing compliance.

V. CONCLUSION

This study investigates how intellectual capital, social capital, and social influence determine the use of academic information systems, while also examining the role of perceived coerciveness within the UTAUT framework. The findings show that students' behavioral intention is strongly determined by their intellectual capital, social capital, and social influence. The capitals can increase students' confidence, knowledge sharing, and social support to facilitate system adoption. In contrast, perceived coerciveness did not significantly influence behavioral intention nor actual usage. Students appear to rely more on their own knowledge and social support rather than on external coercion or pressure when engaging with the academic information system.

The results also indicate that intellectual and social capital can reduce perceived coerciveness, which suggests that students with adequate knowledge and strong social connections feel less compelled and more motivated to use the system. In contrast, social influence increases perceived coerciveness, reflecting that institutional encouragement can sometimes be interpreted as an obligation. Sustainable academic information system engagement emerges from students' willingness and perceived value rather than mandates. This study contributes to the extension of the UTAUT model by integrating intellectual capital, social capital, and perceived coerciveness, which are rarely examined together. This study also demonstrates that coerciveness is not always a meaningful driver of technology usage in academic environments, challenging prior assumptions in institutional theory. Practically, this study offers higher education institutions to create an academic information system platform that improves knowledge exchange through social connections and knowledge sharing collaboration, while at the same time decreasing the need for coercive pressures. Despite the contribution, this study has limitations. The sample is limited to Indonesian university students, which may constrain generalizability to other cultural contexts. The research design also prevents the behavioral observation from changing over time. Future studies should explore adoption patterns and examine whether coerciveness plays a stronger role in different environments, for instance, in government institutions.

REFERENCES

- [1] A. H. Ozgun, M. Tarim, D. Delen, and S. Zaim, "Social capital and organizational performance: The mediating role of innovation activities and intellectual capital," *Healthcare Analytics*, vol. 2, pp. 1–12, Nov. 2022, doi: 10.1016/j.health.2022.100046.
- [2] S. A. Salloum and K. Shaalan, "Factors Affecting Students' Acceptance of E-Learning System in Higher Education Using UTAUT and Structural Equation Modeling Approaches," in *Advances in Intelligent Systems and Informatics 2018*, Springer, 2019, pp. 469–480. doi: 10.1007/978-3-319-99010-1_43.
- [3] K. Bozan, B. Davey, and K. Parker, "Social influence on health IT adoption patterns of the elderly: An institutional theory based use behavior approach," in *Procedia Computer Science*, Elsevier B.V., 2015, pp. 517–523. doi: 10.1016/j.procs.2015.08.378.
- [4] H.-P. Lu and J.-C. Wang, "Exploring the effects of sudden institutional coercive pressure on digital transformation in colleges from teachers' perspective," *Educ Inf Technol (Dordr)*, vol. 28, no. 12, pp. 15991–16015, Dec. 2023, doi: 10.1007/s10639-023-11781-x.
- [5] A. Khraiwish, J. A. Al-Gasawneh, J. M. Joudeh, and N. M. NUsairat, "The differential impacts of customer commitment dimensions on loyalty in the banking sector in Jordan: Moderating the effect of e-service quality," *International Journal of Data & network Science*, vol. 6, no. 2, 2022.
- [6] H. Tarighi, M. Salehi, M. Moradi, and G. Zimon, "Social Capital, Intellectual Capital, and Audit Fee: Conflicting Evidence from Iran," *Economies*, vol. 10, no. 2, Feb. 2022, doi: 10.3390/economies10020039.

- [7] J. Chen, R. Li, M. Gan, Z. Fu, and F. Yuan, "Public Acceptance of Driverless Buses in China: An Empirical Analysis Based on an Extended UTAUT Model," *Discrete Dyn Nat Soc*, vol. 2020, 2020, doi: 10.1155/2020/4318182.
- [8] I. Kurniawan, Y. T. Ardianto, and Hidayatullah. Syarif, "The Effect Of The Information System Quality, Service Quality, And User Satisfaction On Academic Information System User Loyalty," *International Journal of Scientific and Technology Research*, vol. 10, no. 5, pp. 350–355, 2021, [Online]. Available: www.ijstr.org
- [9] J. Nahapiet and S. Ghoshal, "Social Capital Intellectual Capital and the Organizational Advantage," *Academy of Management Review*, vol. 23, no. 2, pp. 242–266, 1998, doi: 10.2307/259373.
- [10] H. P. Lu and I. Dzikria, "The role of intellectual capital and social capital on the intention to use MOOC," *Knowledge Management Research and Practice*, vol. 21, no. 1, pp. 29–40, 2023, doi: 10.1080/14778238.2020.1796543.
- [11] C.-H. Liu, "The relationships among intellectual capital, social capital, and performance - The moderating role of business ties and environmental uncertainty," *Tour Manag*, vol. 61, pp. 553–561, 2017, doi: 10.1016/j.tourman.2017.03.017.
- [12] N. Bontis, "Intellectual capital: an exploratory study that develops measures and models," *Management Decision*, vol. 36, no. 2, pp. 63–76, 1998.
- [13] M. Subramaniam and M. A. Youndt, "The Influence of Intellectual Capital on the Types of Innovative Capabilities," *Academy of Management Journal*, vol. 48, no. 3, pp. 450–463, Jun. 2005, doi: 10.5465/amj.2005.17407911.
- [14] K. Nikolopoulou, V. Gialamas, and K. Lavidas, "Acceptance of mobile phone by university students for their studies: an investigation applying UTAUT2 model," *Educ Inf Technol (Dordr)*, vol. 25, no. 5, pp. 4139–4155, 2020, doi: 10.1007/s10639-020-10157-9.
- [15] C. M. Chao, "Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model," *Front Psychol*, vol. 10, no. JULY, pp. 1–14, 2019, doi: 10.3389/fpsyg.2019.01652.
- [16] P. Smets and E. Bahre, "When coercion takes over: The limits of social capital in microfinance schemes," in *Livelihood and Microfinance. Anthropological and Sociological Perspective on Savings and Debt*, Delft: Eburon, 2004, pp. 215–236.
- [17] R. Pratiwi, M. Nugroho, H. Prabowo, and N. Yusroni, "The Role of Coercive Intellectual Leadership in Improving the Performance of Study Programs Through 6C Characters of Lecturers in Central Java," *International Journal of Social Science and Business*, vol. 6, no. 2, pp. 149–155, Apr. 2022, doi: 10.23887/ijssb.v6i2.45050.
- [18] M. Colvin, F. T. Cullen, and T. Vander Ven, "Coercion, Social Support, and Crime: An Emerging Theoretical Consensus," *Criminology*, vol. 40, no. 1, pp. 19–42, Feb. 2002, doi: 10.1111/j.1745-9125.2002.tb00948.x.
- [19] M. Arshad, M. Farooq, S. Afzal, and O. Farooq, "Adoption of information systems in organizations: Understanding the role of institutional pressures in a collectivist culture," *Journal of Enterprise Information Management*, vol. 33, no. 2, pp. 265–284, Feb. 2020, doi: 10.1108/JEIM-05-2019-0130.
- [20] S. Affandi, "Analisis Use Behavior Pada Aplikasi Mobile Commerce Eden Farm Menggunakan Unified Theory of Acceptance and Use of Technology Model Dan Delone & Mclean Is Success Model," Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, Jakarta, 2023.
- [21] K. T. Yasrawan and N. Trisna Herawati, "History: Efektivitas Penggunaan Dana KUR dan Intellectual Capital Terhadap Kinerja Usaha Mikro Kecil dan Menengah," *Jurnal Akuntansi Profesi*, vol. 13, no. 1, 2022, doi: 10.23887/jappg.v3i2.
- [22] O. Nytingnes, J. Rugkåsa, A. Holmén, and T. Ruud, "The development, validation, and feasibility of the Experienced Coercion Scale," *Psychol Assess*, vol. 29, no. 10, pp. 1210–1220, 2017.
- [23] C. Fornell and D. F. Larcker, "Evaluating structural equation model with unobservable variables and measurement error," *Journal of Marketing Research*, vol. 18, no. 1, pp. 39–50, Feb. 1981, doi: 10.2307/3151312.
- [24] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, "User Acceptance of Information Technology: Toward a Unified View," *MIS Quarterly*, vol. 27, no. 3, pp. 425–478, 2003.