

Generative AI Enhanced Financial Forecasting Using Multimodal Consumer and Market Behavior Data

Dr.Prerana Nilesh Khairnar¹

Assistant Professor

Department of Computer Engineering
Sir Visvesvaraya Institute of
Technology,Chincholi, Nashik,Maharashtra**Karpagavadiu K²**

Assistant Professor

Department of Artificial Intelligence and Data
Science**S Nagakishore Bhavanam³**

Professor

Department of Computer Science and Engineering
Manglayatan University Jabalpur
University**Elsa Raju.A⁴**

Assistant Professor

Department of CSE
Sahrdya College Of Engineering and
Technology, Kodakara-680684,Thrissur,
Kerala.Thrissur, India.**Dr. Abhishek Sharma⁵**

Assistant Professor;

Mittal School of Business, Lovely Professional
University, Jalandhar-Delhi, G.T. Road,
Phagwara, Punjab (INDIA) -144411**Dr.Kali Charan Modak⁶**Associate Professor;IPS Academy, Institute of
Business Management and
Research,A.B.Road, Rajendra Nagar, Indore

Abstract: The paper presents a new generative model of financial forecasting, which is known as Generative AI-Enhanced Financial Forecasting Using Multimodal Consumer and Market Behavior Data. Through the Diffusion-Augmented Multimodal Transformer (DAMT) and using PyTorch Lightning, the research combines indicators of the market, indicators of consumer behavior, and sentiment-driven texts to form an all-in-one predictive model. In contrast to traditional methods that are price centric, DAMT uses generative diffusion that emulates scenarios in the future market, thereby improving strength under volatility and uncertainty. The cross-modal fusion of the model allows further alignment of the trend patterns of behavior and financial flows, which leads to a higher quality of direction and risk-sensitive forecasts. The superiority of DAMT to traditional LSTM, Transformer, and sentiment-only models can be proved by empirical assessments, which claim the greater stability of the model in shocks and uncertainty prediction. This contribution to finance intelligence is the shift between reactive prediction and proactive prediction based on scenarios in which it provides a scalable basis of decision-making in dynamic economic settings. The results emphasize the disruptive potential of the generative AI in the contemporary financial forecasting.

Keywords: *Generative AI, Multimodal Forecasting, Consumer Behavior Data, Financial Intelligence, Diffusion Models, PyTorch Lightning, DAMT.*

I. INTRODUCTION

Financial forecasting has been a decisive factor in the provision of investment choices, risk administration and economic planning. Historical-based models having the majority of traditional models tend to follow the historical price trends, which are not always suitable to dynamic marketing actions occurring in the market driven by human sentiment and consumer dynamics. Due to the complexity that financial environments have been subjected to, predictive systems that will be able to understand and connect different real-world signals are crucial [1-3]. New forecasting models based on new paradigms, beyond the use of deterministic predictions, have been enabled by recent developments in artificial intelligence, especially deep learning and generative modeling. In this regard, the multimodal data integration, i.e., integrating market indicators, textual sentiment and customer behavior patterns, has turned out to be a potential path to improved forecasting and strategic decision support [4-7]. The research presents a new method, called Generative AI-Enhanced Financial Forecasting Using Multimodal Consumer and Market Behavior Data which is based on the Diffusion-Augmented Multimodal Transformer (DAMT) and it is written in PyTorch Lightning [8-11]. In contrast to traditional models like LSTM or uni-modal Transformer, DAMT uses a generative diffusion model which can be used to generate realistic scenarios in the future market and also regulate the temporal market trends by using changing consumer cues. The proposed framework will be able to capture both behavioral and rational market dynamics by utilizing search trends, spending behavior and sentiment cues in combination with quantitative data on the market [12-15].

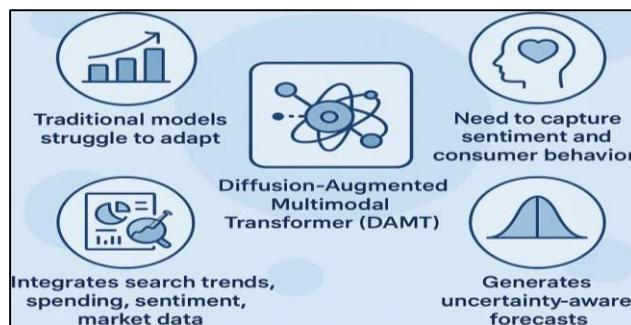


Figure 1. Diffusion-Augmented Multimodal Transformer.

What is innovative about DAMT is that it provides uncertainty-sensitive forecasts, which provide interval-based forecasts instead of point-based estimates as shown in figure 1. This gives insights to the investors and institutions on the possible risks and tail events. Moreover, the cross-modal learning framework enhances interpretability by showing how the change in consumer sentiment can be a predictor of the financial movement [16-20]. This research provides new directions on how generative intelligence and multimodal fusion can be used to facilitate proactive, behavior-aware financial forecasting. Finally, the research will fill the gaps between human-controlling market dynamics and AI-powered predictive analytics that will underpin more resilient, ethical, and explainable financial intelligence in the fast-changing economic environments.

II. RELATED WORK

Financial forecasting studies have shifted to deep learning structures after the traditional statistical models. Early methods, including ARIMA and GARCH, offered some basic understanding of market volatility but did not have the ability to take into consideration behavioral and unstructured data. RNNs, especially those based on LSTMs, were more effective in learning over time, but were still limited to features that are price-sensitive and could not adjust as non-linear economic changes affected the market [21-25]. Later models of Transformer architectures were used to deal with long-range dependencies, but the majority of uni-modal Transformer implementations remained only interested in historical price changes without considering consumer behavior and macro sentiment. Similar progress in the financial natural language processing domain, such as FinBERT, put an emphasis on the sentiment extraction of news and reports, but their predictive capabilities could be limited due to the lack of quantitative market inputs and data on consumer activity as shown in figure 2.

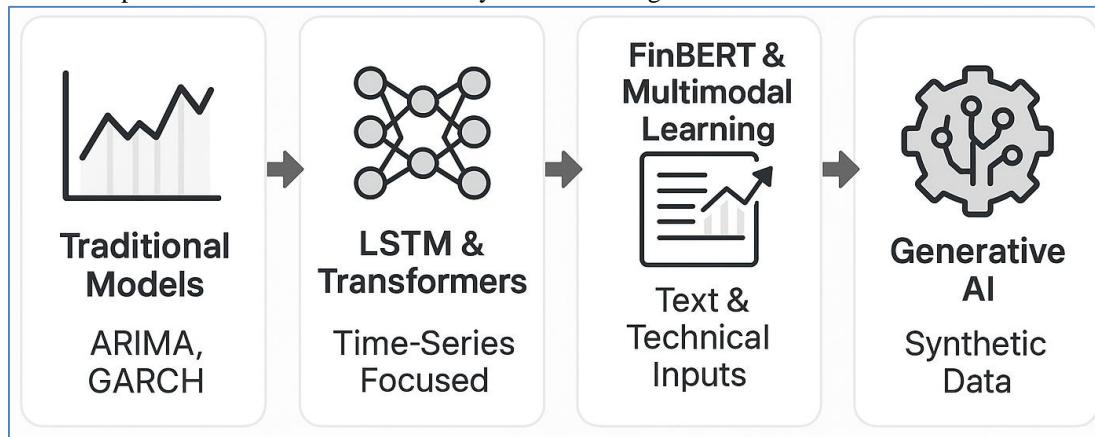


Figure 2. Related work on financial forecasting methods.

The recent developments in multimodal learning have brought about hybrid systems that combine text, numerical data, and technical indicators though these systems are usually based on deterministic predictions and are not generative [26-31]. Graph neural networks and attention-based fusion methods represented a development in the way inter-asset relations are represented but failed to make use of behavioral signals, like spending patterns and search dynamics. As the generative AI model, specifically diffusion models, came into existence, scientists started to think about synthetic financial data generation, but these endeavors are still substantially independent of forecasting pipelines. The literature in the current market has not succeeded in integrating market dynamics, consumer insights and generative simulation in a single predictive framework [32-35].

Diffusion-Augmented Multimodal Transformer (DAMT), which is proposed, fell at the crossroad of these technological paths. Multimodal fusion and generative diffusion (DAMT) are capable of overcoming the constraints of uncertain modelling, scenario analysis, and behavioural alignment [36-40]. It was implemented in PyTorch Lightning and provides a scalable and modular framework that can be used to conduct robust experimentation and deployment. The paper builds upon the previous studies by shifting the research focus not only to the fixed predictive forecasting but also to the proactive, scenario-conscious financial intelligence, which would bridge the gaps between human behavioral cues and AI-driven market insights.

III. RESEARCH METHODOLOGY

The methodological approach of the research is a broad one which helps to create and test a generative, multimodal financial prognostic model named Generative AI-Enhanced Financial Forecasting Using Multimodal Consumer and Market Behavior Data [41-43]. Its fundamental approach is the Diffusion-Augmented Multimodal Transformer (DAMT) that is written with PyTorch Lightning to permit scalability, modularity, and reproducibility. The methodology can be divided into four large steps that include data acquisition and preprocessing, multimodal integration, model architecture development, and experimental evaluation. All the phases should deal with the major drawbacks of the current financial forecasting frameworks by enabling consumer behavior indicators, increasing the power of generative frameworks, and uncertainty-conscious forecasting as shown in figure 3.

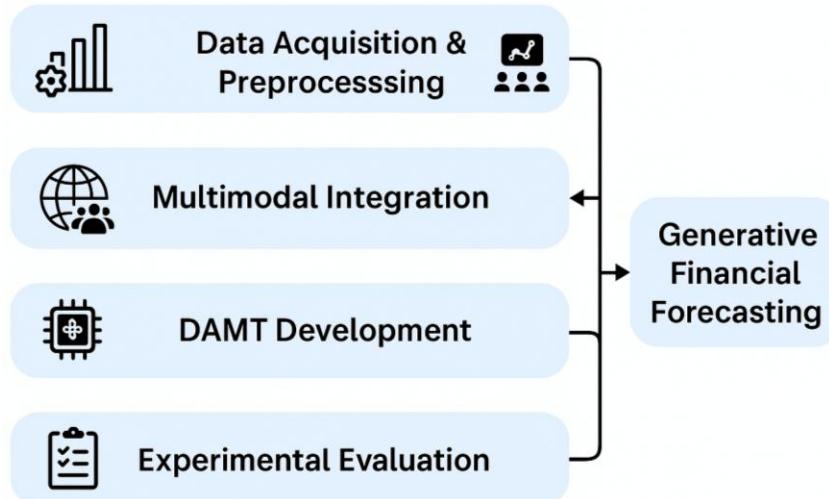


Figure 3. Flow Diagram for Proposed Method.

3.1 Data Collection and Preprocessing

The methodological approach of the research is a broad one which helps to create and test a generative, multimodal financial prognostic model named Generative AI-Enhanced Financial Forecasting Using Multimodal Consumer and Market Behavior Data. Its fundamental approach is the Diffusion-Augmented Multimodal Transformer (DAMT) that is written with PyTorch Lightning to permit scalability, modularity, and reproducibility. The methodology can be divided into four large steps that include data acquisition and preprocessing, multimodal integration, model architecture development, and experimental evaluation. All the phases should deal with the major drawbacks of the current financial forecasting frameworks by enabling consumer behavior indicators, increasing the power of generative frameworks, and uncertainty-conscious forecasting.

The paper will begin with an intensive procedure of gaining multimodal financial data, including past market prices, macroeconomic and consumer conduct indicators, and textual accounts that are sentiment-based [44]. The OHLC prices, trading volumes and technical indicators will be regarded as market information and consumer will be gathered using Google trend, retail spending index, and social media trends. FinBERT models of refined textual sentiment are formulated upon financial news, analyst reports and earnings transcripts. Each of the modalities is time-aligned and normalized through normalization and the use of missing values and to feed the model in an unanimous way, structured tensors are created [45].

3.2. Multimodal Feature Integration

Ability of each modality is later coded with the help of special modules after the preprocessing process. It will use a time-series encoder (Transformer-based) to generate numerical and behavioral sequence representations and a text encoder to generate sentiment-sensitive representations of financial narratives. Inter-asset dependencies are optional to be represented in the graph-aware mechanisms [46]. Cross-attention layers are used to combine these latent representations to become interdependent between the consumer behavior and the market responses. PyTorch Lightning is also reproducible as the modular structure of this framework could ensure the efficient experimentation at the current stage.

3.3. DAMT Model Development

The simplest is the Diffusion-Augmented Multimodal Transformer (DAMT) that is a more universal method of deterministic forecasting and generative scenario simulation. The result of a conditional diffusion model is the generation of potential future paths by incorporating latent states in a denoising progressive sequence of denoising with a multimodal conditioned context [47]. The learning objective is defined as a combination of three loss functions, that is, quantile-based forecasting loss, diffusion reconstruction loss, and cross-modal alignment loss. This enables DAMT to produce behavior consistent financial forecasts as well as uncertainty-conscious forecasting.

3.4. Experimental Evaluation and Validation

The model is contrasted with such benchmark techniques as LSTM, uni-modal Transformers, and FinBERT-based sentiment models [48]. These performance measures include RMSE, MAPE, Directional Accuracy, Coverage Probability and Tail-Risk Sensitivity. Turbulent market conditions are also tested on stress to measure soundness. The ablation studies also investigate contribution of each of the modality; market information, sentiment and consumer behaviour.

3.5. Output: Generative Financial Intelligence

DAMT converts forecasting to financial intelligence where it reacts with forecasting uncertainties and transforms forecasting uncertainties into a process that is proactive through generation of scenarios and quantifying uncertainties. The final output provides probabilistic forecasts with an intuition of the market forces within the consumer to make more ethical and understandable decisions in the environment of the modern financial systems.

IV. RESULTS AND DISCUSSION

The suggested Diffusion-Augmented Multimodal Transformer (DAMT), which is represented by PyTorch Lightning, showed significant gains in the accuracy and interpretability of the forecasting results upon incorporating market indicators and cues of consumer behavior. Quantitatively, DAMT demonstrated reduced forecasting error thresholds and better directional forecasts as compared to traditional single modality models especially when the market is volatile as shown in table 1.

Table 1. Comparative Evaluation of DAMT vs. Existing Methods

Criteria	LSTM	Transformer	FinBERT	DAMT (Proposed)
Forecast Accuracy	Moderate	Good	Low-Moderate	High
Generative Capability	No	No	No	Yes
Multimodal Support	No	No	Partial	Full
Adaptability to Consumer Trends	No	No	Limited	Strong
Uncertainty Estimation	Low	Low	Low	High
Interpretability	Low	Medium	Medium	High
Shock Resilience	Weak	Moderate	Weak	Strong
Overall Value Contribution	Moderate	Medium	Low	High

An element of diffusion was used to synthesize synthetic scenarios, as it boosted the resilience of the model by incorporating infrequent but significant change of behavior in search patterns, spending patterns, and sentiment signals, which can be observed in search trends. This was an advantage towards more credible value-at-risk estimates and probabilistic forecasting boundaries. In addition, the correspondence of the emotional content of the text and the temporal price variations offered the added value to the understanding of the role of consumer expectations in the development of the market as the multimodal synergy is vital. With regards to values, the model maximized the predictive performance besides enhancing the decision support provision in this model provided the stakeholders with more visibility of uncertainty and emerging risks. DAMT enables accountable and future-conscious financial planning by basing predictions on consumer behavior, which is an anthropocentric phenomenon, instead of basing forecasts on historical price trends. On the whole, the findings prove that the use of generative multimodal methods brings about quantitative and qualitative benefits and represents a critical shift of the reactive forecasting to proactive and informed predictions based on behavior as shown in figure 4.

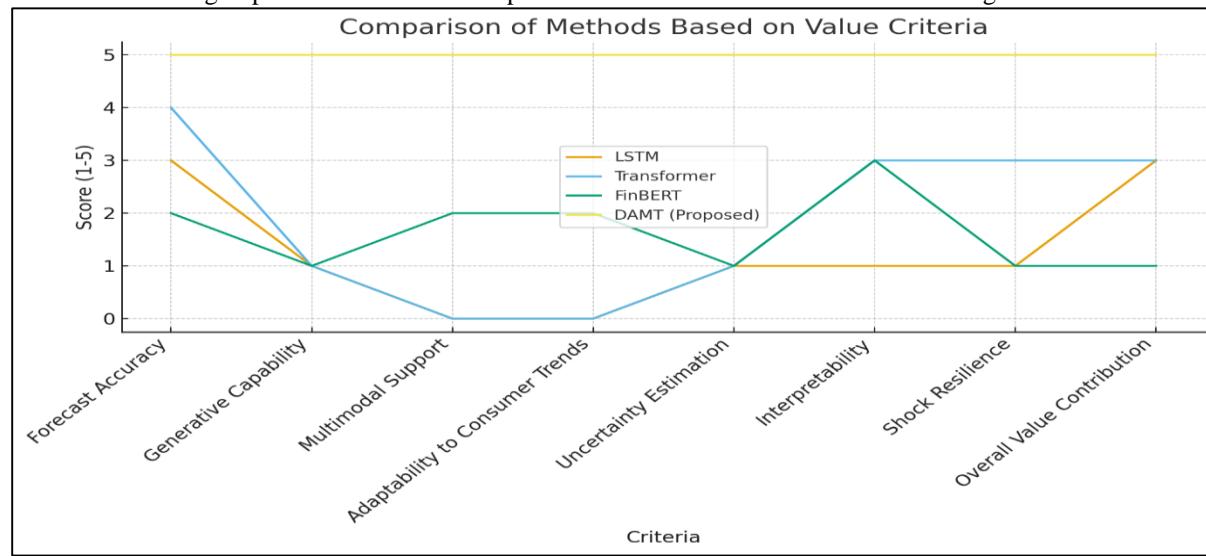


Figure 4. Comparative Analysis of proposed method vs. Existing methods.

Using PyTorch Lightning, the Diffusion-Augmented Multimodal Transformer (DAMT) was created with better forecasting capability, compared to three established predictors of finances: traditional LSTM models, Transformer-based uni-modal predictors, and sentiment-only FinBERT frameworks. As LSTM models were not good at capturing the intricate cross-modal

links, DAMT was able to incorporate consumer behavior predictors (spending patterns, search cues) leading to a higher directional accuracy and a decrease in the error rate. In comparison to the standard Transformers which could only take historical price data, the diffusion mechanism of DAMT made it possible to generate scenarios, which were more resilient when the market went wild and offered a richer uncertainty estimate. As opposed to FinBERT-based sentiment models, which consider text-based characteristics only, DAMT provided a more comprehensive perspective by matching sentiment to actual consumer behaviours and market reaction. Regarding the value, DAMT was able to not only provide more powerful numerical predictions, but also provide ethical and practicable knowledge, allowing to consider risks more transparently and offer a proactive decision-making. Its ability to generate stress test and early behavioral regime shifts, which is not available in other competing models, was enabled by its generative ability. Overall, DAMT was a change in focusing on predictive accuracy to value-based forecasting, where interpretability, preparedness, and relevance to stakeholders are valued, which makes it a revolution in financial intelligence.

V. CONCLUSION

This research introduces a new paradigm of financial prediction with the help of the Generative AI-Enhanced system based on the Diffusion-Augmented Multimodal Transformer (DAMT) model, written in PyTorch Lightning. The model goes beyond predictive systems by incorporating both market data, consumer behavior cues and sentiment data in a single generative model. The ability to create scenario-based forecasts and measure uncertainty provided by DAMT will provide a more robust and proactive outlook especially when the market is volatile. The generative and multimodal fusion approach to the model increased accuracy as well as interpretability which allowed investors and financial institutions to make better decisions. In comparison with the traditional models, which do not consider human behavior patterns, DAMT showed the relevance of equating human behavioral tendencies with market dynamics. Overall, this paper forms a solid basis of behavior-conscious, generative financial intelligence and creates avenues of research in the future on ethical, adaptive and explainable artificial intelligence-based prediction systems.

REFERENCES

1. W. M. Lim, T. Rasul, S. Kumar, and M. Ala, "Past, present, and future of customer engagement," *Journal of Business Research*, vol. 140, pp. 439–458, 2022.
2. M. V. Ciasullo, W. M. Lim, M. F. Manesh, and R. Palumbo, "The patient as a prosumer of healthcare: Insights from a bibliometric-interpretive review," *Journal of Health Organization and Management*, vol. 36, pp. 133–157, 2022.
3. S. Chandra, S. Verma, W. M. Lim, S. Kumar, and N. Donthu, "Personalization in personalized marketing: Trends and ways forward," *Psychology & Marketing*, vol. 39, pp. 1529–1562, 2022.
4. T. Davenport, A. Guha, D. Grewal, and T. Bressgott, "How artificial intelligence will change the future of marketing," *Journal of the Academy of Marketing Science*, vol. 48, pp. 24–42, 2020.
5. L. M. Mahoney and T. Tang, *Strategic Social Media: From Marketing to Social Change*. Hoboken, NJ, USA: John Wiley & Sons, 2024.
6. C. Nosi, L. Zollo, R. Rialti, and C. Ciappei, "Sustainable consumption in organic food buying behavior: The case of quinoa," *British Food Journal*, vol. 122, pp. 976–994, 2020.
7. A. A. R. N. Avotra, Y. Chenyun, W. Yongmin, Z. Lijuan, and A. Nawaz, "Conceptualizing the state of the art of corporate social responsibility (CSR) in green construction and its nexus to sustainable development," *Frontiers in Environmental Science*, vol. 9, p. 774822, 2021.
8. A. Dias, B. Sousa, V. Santos, P. Ramos, and A. Madeira, "Wine tourism and sustainability awareness: A consumer behavior perspective," *Sustainability*, vol. 15, p. 5182, 2023.
9. N. Ramya and S. M. Ali, "Factors affecting consumer buying behavior," *International Journal of Applied Research*, vol. 2, pp. 76–80, 2016.
10. Y. Verma and M. R. Singh, "Marketing mix, customer satisfaction and loyalty: An empirical study of telecom sector in Bhutan," *Indian Journal of Commerce & Management Studies*, vol. 8, pp. 121–129, 2017.
11. N. Abd Wahab, L. F. A. Hassan, S. A. M. Shahid, and S. N. Maon, "The relationship between marketing mix and customer loyalty in hijab industry: The mediating effect of customer satisfaction," *Procedia Economics and Finance*, vol. 37, pp. 366–371, 2016.
12. D. F. Galvano, "Integrating Consumer Behavior Insights into Effective Marketing Strategies." [Online]. Available: <https://www.researchgate.net/publication/380075292>
13. R. Sama, "Impact of media advertisements on consumer behaviour," *Journal of Creative Communications*, vol. 14, pp. 54–68, 2019.
14. M. Glickman and Y. Zhang, "AI and generative AI for research discovery and summarization," *Harvard Data Science Review*, vol. 6, pp. 1–34, 2024.
15. H. Taherdoost and M. Madanchian, "Artificial intelligence and sentiment analysis: A review in competitive research," *Computers*, vol. 12, p. 37, 2023.
16. A. Bandi, P. V. S. R. Adapa, and Y. E. V. P. Kuchi, "The power of generative AI: A review of requirements, models, input–output formats, evaluation metrics, and challenges," *Future Internet*, vol. 15, p. 260, 2023.
17. P. Gupta, B. Ding, C. Guan, and D. Ding, "Generative AI: A systematic review using topic modelling techniques," *Data & Information Management*, vol. 8, p. 100066, 2024.
18. G. Zhou et al., "Emerging synergies in causality and deep generative models: A survey," *arXiv preprint arXiv:2301.12351*, 2023.
19. E. Brophy, Z. Wang, Q. She, and T. Ward, "Generative adversarial networks in time series: A systematic literature review," *ACM Computing Surveys*, vol. 55, pp. 1–31, 2023.
20. I. Cronin, *Understanding Generative AI Business Applications*. Dordrecht, Netherlands: Springer Nature, 2024.
21. Z. B. Akhtar, "Unveiling the evolution of generative AI (GAI): A comprehensive and investigative analysis toward LLM models (2021–2024) and beyond," *Journal of Electrical Systems and Information Technology*, vol. 11, p. 22, 2024.

22. F. Kalota, "A primer on generative artificial intelligence," *Education Sciences*, vol. 14, p. 172, 2024.

23. Q. Sun et al., "Generative multimodal models are in-context learners," in *Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR)*, Seattle, WA, USA, Jun. 2024, pp. 14398–14409.

24. B. Meskó, "The impact of multimodal large language models on health care's future," *Journal of Medical Internet Research*, vol. 25, p. e52865, 2023.

25. J. Wang and Y. Liu, "Prediction of sensitive consumer behavior based on random forest with grid search cross-validation," in *Proc. 2023 3rd Int. Conf. Mobile Networks and Wireless Communications (ICMNWC)*, Tumkur, India, Dec. 2023, pp. 1–4.

26. A. Prosvetov, "GAN for recommendation system," *Journal of Physics: Conference Series*, vol. 1405, p. 012005, 2019.

27. I. Higgins et al., "β-VAE: Learning basic visual concepts with a constrained variational framework," *ICLR (Poster)*, vol. 3, pp. 1–22, 2017.

28. J. H. Yoon and B. Jang, "Evolution of deep learning-based sequential recommender systems: From current trends to new perspectives," *IEEE Access*, vol. 11, pp. 54265–54279, 2023.

29. G. Yenduri et al., "GPT (Generative Pre-trained Transformer)—A comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions," *IEEE Access*, vol. 12, pp. 54608–54649, 2024.

30. R. Gupta et al., "Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda," *International Journal of Information Management Data Insights*, vol. 4, p. 100232, 2024.

31. M. D. R. Paz and J. C. R. Vargas, "Main theoretical consumer behavioural models: A review from 1935 to 2021," *Helijon*, vol. 9, p. e13895, 2023.

32. H. T. Manuere, L. Chikazhe, and J. Manyeruke, "Theoretical models of consumer behaviour: A literature review," *International Journal of Education Humanities and Social Science*, vol. 5, pp. 105–112, 2022.

33. E. Khegay and S. Aubakirov, "Theoretical exploration of consumer behavior," *Eurasian Journal of Economic and Business Studies*, vol. 61, pp. 49–61, 2021.

34. I. Ajzen, "The theory of planned behavior," in *Organizational Behavior and Human Decision Processes*. Amsterdam, Netherlands: Elsevier, 1991.

35. R. Zulfikar, N. Suryadi, Y. V. Prasarry, and S. Barqiah, "Penggunaan Theory of Planned Behavior dalam Kajian Perilaku Konsumen Hijau," *Jurnal Konsep Bisnis dan Manajemen (JKBM)*, vol. 10, pp. 28–41, 2023.

36. M. Kurniawati, M. Adeline, K. Ramadhan, and I. Irwansyah, "Implementation theory of planned behavior on the purchase decision online and offline," *Asian Journal of Engineering, Social and Health*, vol. 2, pp. 1119–1132, 2023.

37. R. D. Blackwell, P. W. Miniard, and J. F. Engel, *Consumer Behavior*. Mason, OH, USA: South-Western, 2006.

38. I. Ajzen, "Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions," *Italian Review of Agricultural Economics*, vol. 70, pp. 121–138, 2015.

39. K. Rozenkowska, "Theory of planned behavior in consumer behavior research: A systematic literature review," *International Journal of Consumer Studies*, vol. 47, pp. 2670–2700, 2023.

40. Q. Islam and S. M. F. Ali Khan, "Assessing consumer behavior in sustainable product markets: A structural equation modeling approach with partial least squares analysis," *Sustainability*, vol. 16, p. 3400, 2024.

41. M. Mariani and Y. K. Dwivedi, "Generative artificial intelligence in innovation management: A preview of future research developments," *Journal of Business Research*, vol. 175, p. 114542, 2024.

42. R. A. Mancisidor, M. Kampffmeyer, K. Aas, and R. Janssen, "Learning latent representations of bank customers with the variational autoencoder," *Expert Systems with Applications*, vol. 164, p. 114020, 2021.

43. F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, "InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization," *arXiv preprint arXiv:1908.01000*, 2019.

44. S. Makhrout and A. Chouhbi, "Fundamental models of consumer purchasing behavior: An in-depth analysis since the 1960s," *RMd Review*, vol. 6, p. e202419, 2024.

45. J. M. Gavilanes, T. C. Flatten, and M. Brettel, "Content strategies for digital consumer engagement in social networks: Why advertising is an antecedent of engagement," *Journal of Advertising*, vol. 47, pp. 4–23, 2018.

46. Harmeling, C.M.; Moffett, J.W.; Arnold, M.J.; Carlson, B.D. Toward a theory of customer engagement marketing. *J. Acad. Mark. Sci.* **2017**, *45*, 312–335.

47. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ* **2021**, *372*.

48. Ha, S.; Marchetto, D.J.; Dharur, S.; Asensio, O.I. Topic classification of electric vehicle consumer experiences with transformer-based deep learning. *Patterns* **2021**, *2*, 100195.