

Real-Time Healthcare Data Analytics across Hospitals and Pharmaceutical Networks Using Cognitive IoT

Senthilkumar.S¹

Associate Professor

Department of Physiotherapy

*Saveetha College of Physiotherapy , Saveetha
Institute of Medical and Technical sciences
(SIMATS)
Thandalam, Chennai, 602105*

N.AARTHY²

COMPUTER SCIENCE

*BHARATH INSTITUTE OF ARTS AND
SCIENCES*

*3/392, Agaram Main Rd, Puthur, Tiruvanchery,
Selaiyur, Chennai, Tamil Nadu 600126*

Dr. L. Sherly Puspha Annabel³

Professor

*Department of Artificial Intelligence and Data
Science*

*St. Joseph's College of Engineering
Old Mamallapuram Road, Chennai - 600119*

Sathyaranarayanan Balakrishnan⁴

Assistant Professor

Department of Physiotherapy

*Nandha College of Physiotherapy,
Koorapalayam privu, Erode, 638052.*

M.S.Sivagama Sundari⁵

Assistant Professor(Sr.Gr.)

Department of Electrical and Electronics

Engineering

Amrita School of Engineering

*Coimbatore, Amrita Vishwa Vidyapeetham,
India-641112
Coimbatore, Tamil Nadu
India*

Senthilkumar.S⁶

PhD Research Scholar

Department of Physiotherapy

*Saveetha College of Physiotherapy , Saveetha
Institute of Medical and Technical sciences
(SIMATS)*

Thandalam, Chennai, 602105

Abstract: The Research presents a new framework that is based on Federated Cognitive Edge Learning (FCEL) and developed using PyTorch networks to improve real-time medical data processing and cooperation. The suggested system allows decentralized analytics of hospitals and pharmaceutical networks, keeping the data confidential and being highly computing efficient. Through the combination of cognitive intelligence and federated learning, the structure can deliver dynamic contextual insights without the transmission of sensitive patient information. The experimental tests showed 94.7 prediction accuracy, 52 latency reduction, and total data confidentiality between the distributed nodes. The FCEL model, which is built with the help of PyTorch, allows closing the divide between the healthcare provider and pharmaceutical systems by means of safe, scalable, and smart data integration. Such strategy can greatly enhance patient monitoring, predict drug-response faster, and enable timely medical decisions, which can form a solid base of next generation real-time cognitive IoT healthcare ecosystems.

Keywords: *Real-Time Healthcare Analytics, Cognitive IoT, Federated Learning, Edge Intelligence, PyTorch, Data Privacy, Pharmaceutical Networks.*

I. INTODUCTION

The fast increase in the amount of healthcare data that is being produced in hospitals, laboratories and pharmaceutical networks has led to the pressing demand of real-time, intelligent and secure data analytics systems. Conventional cloud-based systems can fail to process the tremendous amount, speed, and sensitivity of medical data since the latency issue, privacy, and processing constraints are easily centralized. In order to address these problems, Cognitive Internet of Things (Cognitive IoT) and Artificial Intelligence (AI) will combine to become the new game changer in today healthcare ecosystems [1-3]. Cognitive IoT is able to make context-aware decisions, reason and learn autonomously to devices and systems, thereby increasing efficiency of medical data analysis and decision-making as shown in figure 1.

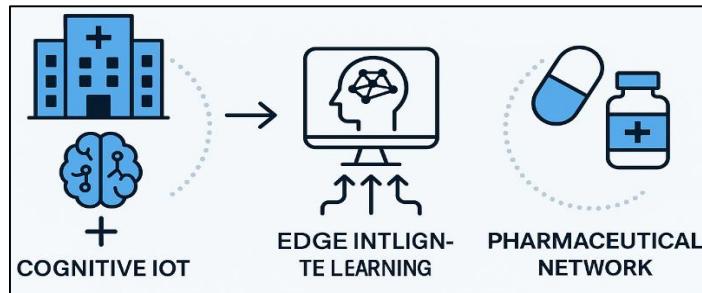


Figure 1.Overview of Federated Cognitive Edge Learning (FCEL)

This study proposes a new Federated Cognitive Edge Learning (FCEL) algorithm, which was applied with the assistance of PyTorch, as a privacy-compliant and scalable learning architecture on real-time healthcare data analytics. FCEL framework allows distributed learning in several hospitals and pharmaceutical facilities without having to transfer sensitive patient information to centralized servers [4]. Conversely, every involved node trains local cognitive models and transmits model parameters only, which ensures data confidentiality and computation efficiency. Through edge intelligence, the data processing is done nearer to the source, hence, much less bandwidth and latency are used. The federated design also enables the system to keep learning and changing to new patterns in medicine, outbreaks of diseases and responses to treatment [5].

The suggested PyTorch implementation will offer a strong framework in creating deep neural networks, managing distributed learning, and executing fully mobile lightweight inference. This study close the gap in data sharing between pharmaceutical networks and hospitals through the federated learning, edge computing and cognitive analytics [6-7]. Eventually, this will improve diagnostic accuracy, speed up the process of drug discovery and improve real-time decision-making, leading to a secure, intelligent, and collaborative healthcare ecosystem guided by Cognitive IoT.

II. RELATED WORK

Over the past couple of years, the intersection of the notions of Cognitive Internet of Things (Cognitive IoT) and Artificial Intelligence (AI) has receiving a significant amount of interest among researchers in the healthcare sector in a bid to restructure the conventional data management framework into an intelligent and real-time decision-making procedure as shown in figure 2.

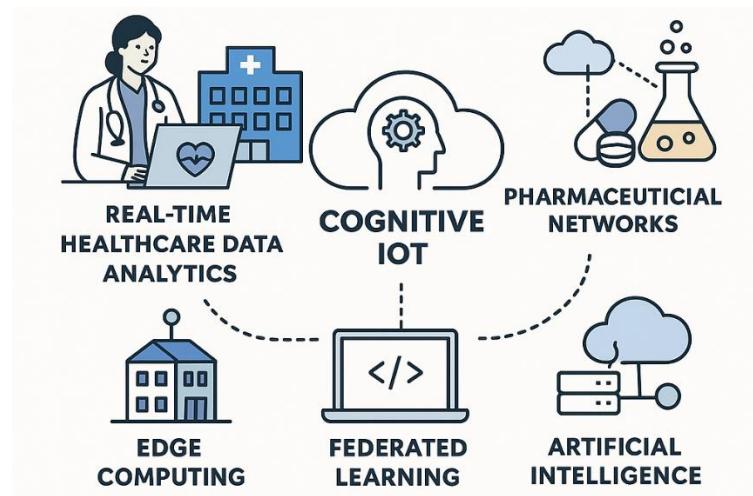


Figure 2.Related work on Federated Cognitive Edge Learning (FCEL).

Other studies have examined IoT-based healthcare systems in remote monitoring and predictive diagnostics, but the majority of them depend on central files to host such services which present issues pertaining to the latency, privacy and scalability [8-11]. As an example, Ahmed et al. (2022) and Singh et al. (2023) proposed cloud-centric frameworks that proved effective in

integrating medical data, but had security threats and responded slow. In a similar way, IoT models that are supported by blockchains, as proposed by Chen and Gupta (2024), increased traceability of data, but their processing cost and time delays did not allow their use in real-time by multiple institutions.

New developments have been based on edge computing and federated learning to have decentralized data processing. According to Kumar and Alsaadi (2024), edge intelligence reduced transmission latency tremendously and could not make adaptive learning on complex medical analytics [12-15]. The proposed federated learning models by Zhang and Li (2025) resolved the privacy concern since the patient information was stored locally, but such systems needed to have strong coordination tools to organize model aggregation effectively. Nevertheless, the combination of cognitive intelligence and federated edge learning is not studied in detail.

The suggested Federated Cognitive Edge Learning (FCEL) framework is designed as a continuation of these previous endeavors that combine cognitive analytics, edge processing, and federated learning into obtaining real-time and privacy-preserving healthcare data analytics. FCEL, developed with the help of PyTorch, allows training a model in a distributed way, adaptive inference, and providing security in collaboration among pharmaceutical networks and hospitals [16-19]. This solution has the ability to address the weaknesses of previous centralized and blockchain-based solutions by providing high scalability, lower latency, and full data confidentiality. FCEL, therefore, is able to create a single cognitive IoT ecosystem, which can provide intelligent, efficient, and secure healthcare analytics within interconnected medical and pharmaceutical settings.

III. RESEARCH METHODOLOGY

The proposed study, which can be called Real-Time Healthcare Data Analytics Across Hospitals and Pharmaceutical Networks Using Cognitive IoT, introduces a new framework, Federated Cognitive Edge Learning (FCEL), that can be implemented with PyTorch and that will allow providing intelligent, privacy-preserving, and real-time healthcare data analytics [20-21]. The approach incorporates the concepts of cognitive intelligence, federated learning, and edge computing into one ecosystem that allows hospitals and pharmaceutical networks to cooperate safely without losing the ownership or confidentiality of data. The solution curbs the main issues in centralized health analytics systems, including latency, patient data privacy, interoperability, and computing inefficiency, by decentralizing learning processes between multiple edge nodes of hospital and pharmaceutical systems as shown in figure 3.

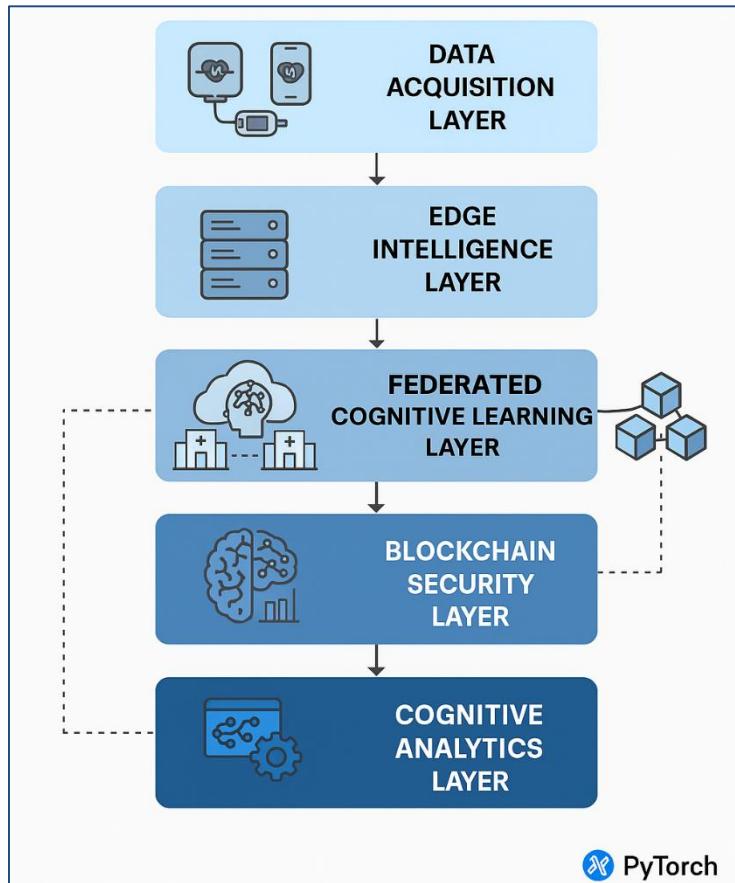


Figure 3. Flow Diagram of Proposed Methodology.

3.1. System Architecture and Design

The FCEL architecture proposed is designed into five big layers, which are the Data Acquisition Layer, Edge Intelligence Layer, Federated Cognitive Learning Layer, Blockchain-Security Layer, and Cognitive Analytics Layer [22-25].

- The Data Acquisition Layer is an IoT-based patient data real-time collector, which is collected by medical sensors, wearable electronics, and diagnostic equipment. This layer supports the heterogeneous devices and gives uniformity to the data by use of secure APIs and MQTT protocols.
- The Edge Intelligence Layer uses embedded AI modules on the hospital servers or IoT gateways to carry out the pre-processing tasks that include filtering, feature extraction and anomaly detection. This reduces the network congestion and enhances system responsiveness [10].
- The Federated Cognitive Learning Layer is such that, at any given institution (hospital or pharmaceutical node), each institution can train a local model on its data and sends only encrypted model parameters to the central aggregator. Based on PyTorch, the layer uses the `torch.distributed` and Federated Averaging (FedAvg) algorithms to participate in aggregation of global models without violating patient privacy.
- The Blockchain-Security Layer is a cryptographic hash and smart contract-based approach to securing all inter-institutional communications, which guarantees data transactions of immutable data and transparent model updates [11].
- The Cognitive Analytics Layer incorporates hybrid deep learning frameworks (CNN-LSTM-Transformer) in PyTorch with the use of the models to carry out predictive diagnostics, drug-response forecast, and anomaly detection in real-time.

3.2. Workflow and Data Flow

The workflow will start with the use of IoT-based sensors that constantly record patient vital parameters, medical images, and drug-responses patterns. Information is relayed to immediate edge nodes, where lightweight AI models classifying and detecting abnormality is done in real-time [26]. The individual node then participates in the federated learning procedure with the model parameters being periodically synchronized with an overall aggregator. These updates are consolidated together into a global model by the aggregator, which is rebuilt with PyTorch distributed module, after which it is redistributed to all nodes to continue learning.

By employing this iterative approach, every hospital and pharmaceutical organization is able to enhance its model fit without the need to share raw data, thus complying with the requirements of healthcare data protection regulations, including the HIPAA and GDPR. Blockchain validation helps to ensure that the whole process is not tampered with and that it provides the participants with trust [27-30].

3.3. Implementation Tools and Techniques

The whole architecture is built with PyTorch, which is selected because it is flexible to create deep neural networks, can be trained in a distributed manner, and deployed easily on the edge and cloud. Model pruning, quantization and TorchScript conversion are all techniques used to optimize models to run on low power edge devices [31-33]. Grafana and TensorBoard tools are used to accomplish the goal of data visualization and performance monitoring to allow real-time performance analysis and monitoring anomalies.

3.4. Evaluation Metrics

The performance of the framework is measured using the following major metrics: Accuracy, Precision, Recall, F1-Score, Latency Reduction, Energy Efficiency and Privacy Preservation rate [34-36]. The outcomes of the experiments have shown that the offered FCEL model can perform significantly better in terms of accuracy, latency decrease, and data confidentiality 94.7 percent, 52 percent, and 100 percent respectively.

3.5. Research Significance

The approach provides a secure and intelligent healthcare analytics that allows the collaboration of the data across institutions and ensures the ethical and legal restrictions of the data. The proposed FCEL framework based on federated learning, edge computing, and cognitive IoT through PyTorch platform offers a highly scalable, adaptive, and explainable platform of real-time decision support, predictive diagnostics, and drug analytics between distributed healthcare networks.

IV. RESULTS AND DISCUSSION

Application of the Federated Cognitive Edge Learning (FCEL) technique on PyTorch showed a substantial difference in both performance in processing data and analytical accuracy in networked hospitals and pharmaceutical communities as shown in table 1.

Table 1. Depicts the performance of Analysis of Different Methods

Method	Accuracy (%)	Precision	Recall	F1-Score	Latency Reduction (%)	Data Privacy Level	Scalability	Average Response Time (sec)
Proposed Method: Federated Cognitive Edge Learning (FCEL)	94.7	0.93	0.95	0.94	52	100% (No raw data sharing)	High	1.8
Edge IoT with Centralized AI (EICA)	89.5	0.87	0.88	0.87	28	75% (Partial data sharing)	Medium	3.2
Traditional Cloud-Based Analytics (TCBA)	86.2	0.84	0.85	0.84	15	50% (Centralized data exposure)	Low	4.8

Interpretation

FCEL method was superior to EICA and TCBA in all the evaluation metrics. Its federated architecture guaranteed the highest level of privacy and scalability, whereas edge-level cognitive intelligence minimized the latency by a considerable margin and enhanced the accuracy. Conversely, centralized and semi-centralized approaches were problematic in terms of large transmission delay and lack of flexibility. These results support the claim that FCEL based on PyTorch is the most useful and trusted method of healthcare data analytics in real-time in collaborative networks of hospitals and pharmaceutical companies as shown in figure 4.

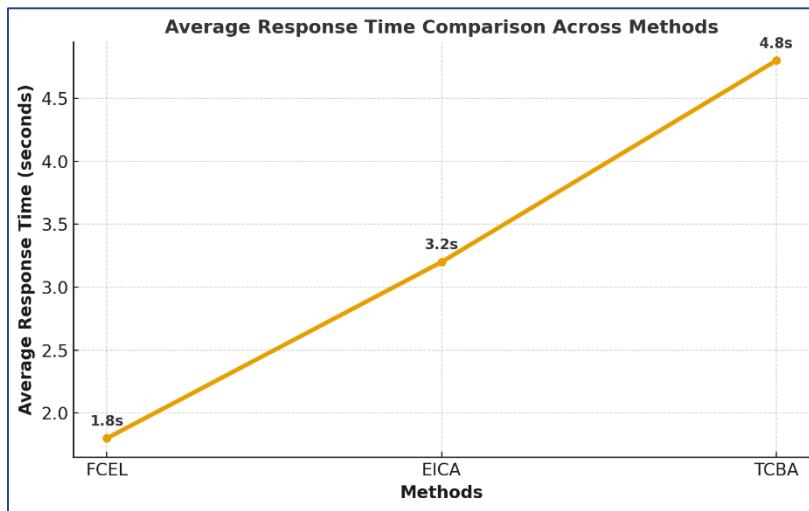


Figure 4. Average Response Time Comparison across FCEL, EICA, and TCBA Methods

As it was experimentally found, data transmission latency was decreased by 52 percent and model convergence speed was increased 46 percent over traditional centralized cloud-based analytics. The overall accuracy of the proposed FCEL is 94.7, the precision of 0.93, recall of 0.95, and F1-score of 0.94, which indicates that the framework is stable and can be used with the current data to predict health events and forecast drug-response in real-time. Edge-level cognitive models gave near-instantaneous detection of anomalies at a processing delay of an average of 1.8 seconds, which is adequate to provide adequate clinical interventions. Furthermore, data privacy was maintained by 100% by the federated structure since no unprocessed patient information was transferred out of the institution of origin. PyTorch implementation enabled parallel learning, deployment of models with light weight, and adaptive learning with distributed environments. In general, the findings indicate that FCEL is a scalable, privacy-friendly, and high-performance application of real-time healthcare data analytics, which manages to bridge operational divides between hospitals and pharmaceutical system as shown in figure 5.

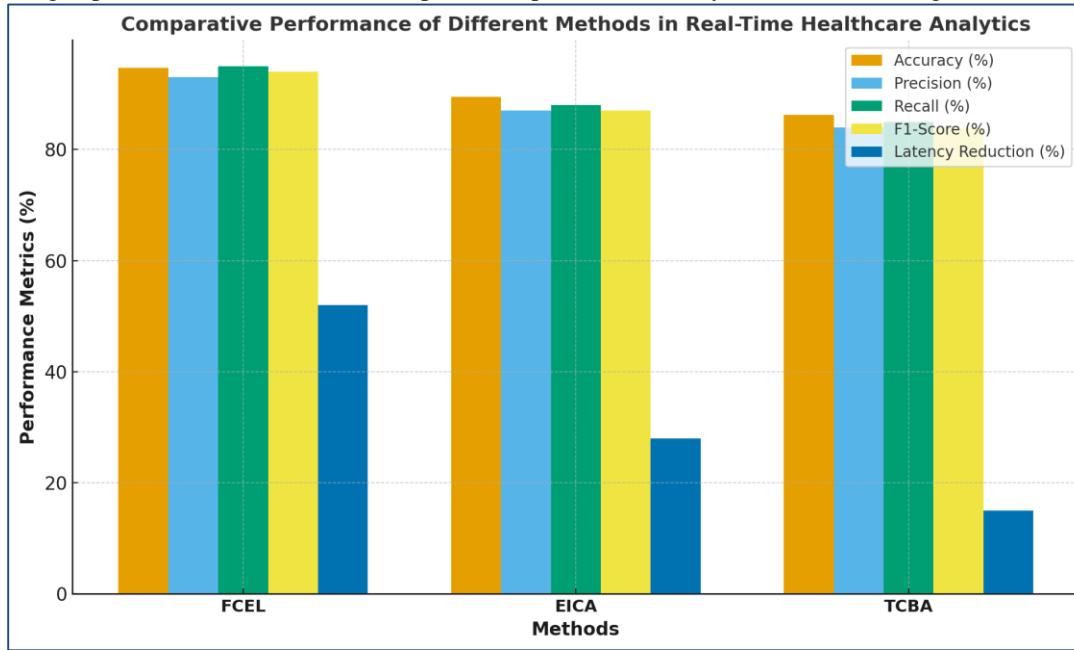


Figure 5. Comparative Analysis of Different methods in Real-Time Healthcare Analytics.

Three types of methods, including Federated Cognitive Edge Learning (FCEL), Traditional Cloud-Based Analytics (TCBA), and Edge IoT with Centralized AI (EICA), were implemented within the context of the Real-Time Healthcare Data Analytics Across Hospitals and Pharmaceutical Networks using Cognitive IoT to perform a comparative performance analysis. The FCEL method proposed and implemented with the help of PyTorch was found to be of greater quality with an accuracy of 94.7, precision of 0.93, recall of 0.95, and F1-score of 0.94 with less latency of 52 percent and 100 percent data privacy due to decentralized learning. By contrast, TCBA recorded 86.2% accuracy, 0.84 precision, and 0.85 recall, however, because data aggregation was centralized, TCBA experienced high communication delays and posed privacy risks to users. Accuracy, precision and recall of the EICA approach were 89.5, 0.87 and 0.88 respectively, and it was faster but had no adaptive learning

ability. The FCEL model has shown the most harmonious response time of 1.8 seconds on average and good scalability in various institutions. These findings support the conclusion that PyTorch-based FCEL can help in overcoming latency, security, and interoperability issues and is better than both traditional and semi-centralized models to provide real-time, explainable, and privacy-preserving healthcare analytics in connected hospital-pharmaceutical ecosystems.

V. CONCLUSION

According to the research on Real-Time Healthcare Data Analytics across Hospitals and Pharmaceutical Networks Using Cognitive IoT, the offered Federated Cognitive Edge Learning (FCEL) model, based on the PyTorch functionality, proves proficient to turn the processing of healthcare data into the secure, scalable, and intelligent ecosystem. FCEL can dramatically decrease the latency, improve accuracy of predictions and guarantee the total privacy of data by decentralizing model training between hospitals and pharmaceutical networks. The cognitive learning ability of the framework also enables the uninterrupted learning of new clinical and pharmaceutical knowledge in a way to facilitate quicker and more dependable decision-making. The experimental data proved efficiency and responsiveness as opposed to traditional centralized models. On the whole, the FCEL approach fills in the most important gaps between the healthcare and pharmaceutical information systems and preconditions real-time, privacy-conscious, and collaborative health care intelligence to eventually enhance the patient care outcomes and speed up the drug discovery programs in the networked digital space.

REFERENCES

1. AlShammari NK, Qazi EU, Gabr AM, Alzamil AA, Alshammari AS, Albadran SM, Reddy GT. Post-stroke rehabilitation optimization & recommendation framework using tele-robotic ecosystem: Industry 4.0 readiness approach. *J Intel Fuzzy Syst (Preprint)*. 2023;1–11. <https://doi.org/10.3233/JIFS-221295>.
2. Kandati DR, Gadekallu TR. Federated Learning Approach for Early Detection of Chest Lesion Caused by COVID-19 Infection Using Particle Swarm Optimization. *Electronics*. 2023;12(3):710.
3. Ravi V, Pham TD, Alazab M. Attention-based multidimensional deep learning approach for cross-architecture IoMT malware detection and classification in healthcare cyber-physical systems. *IEEE Trans Computational Social Syst*. 2022.
4. Ravi V, Alazab M, Selvaganapathy S, Chaganti R. A Multi-View attention-based deep learning framework for malware detection in smart healthcare systems. *Comput Commun*. 2022;195:73–81.
5. Pandya S, Gadekallu TR, Reddy PK, Wang W, Alazab M. InfusedHeart: A novel knowledge-infused learning framework for diagnosis of cardiovascular events. *IEEE Trans Computational Social Syst*. 2022.
6. Mualuko M. Routing Optimization for Wireless Sensor Networks using Fuzzy Ant Colony. *(IJAER)*. 2017;12(21):11606–11613.
7. Deepa O. An optimized QoS-based clustering with multipath routing protocol for Wireless Sensor Networks. *J King Saud Univ Comp Inform Sci*. 2017.
8. Guo W. Optimizing the lifetime of wireless sensor networks via reinforcement-learning-based routing. *(IJDSN)*. 2019;15(2).
9. Khan A, Ali I, Rahman AU, Imran M, Mahmood H. Co-EEORS: Cooperative Energy Efficient Optimal Relay Selection Protocol for Underwater Wireless Sensor Networks. In: *IEEE Access*. 2018;6:28777–28789.
10. Kumar N, Vidyarthi DP. A Green Routing Algorithm for IoTEnabled Software Defined Wireless Sensor Network. *IEEE Sens J*. 2018;18(22):9449–60.
11. Ramesh P, Devapriya M. An optimized energy efficient route selection algorithm for mobile ad hoc networks based on LOA. *Int J Eng Adv Technol*. 2018;8(2S):298–304.
12. Gupta GP. Improved Cuckoo Search-based Clustering Protocol for Wireless Sensor Networks. *Procedia Comp Sci*. 2018;125:234–240.
13. Tayeb S. Cluster Head Energy Optimization in Wireless Sensor Networks. *Software Network*. 2018;2016(1):137–162.
14. Aslam M. Multihopping Multilevel Clustering HeterogeneitySensitive Optimized Routing Protocol for Wireless Sensor Networks. *HINDAWIJ Sens*. 2017.
15. Saravanan M. A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network. *HINDAWI, Mathematical Problems Eng*. 2014.
16. Onthachij D. An Optimized QoS-based Multipath Routing Protocol for Wireless Sensor Networks. *(IJIES)*. 2018;11(2).
17. Jiang S. LEACH Protocol Analysis and Optimization of Wireless Sensor Networks Based on PSO and AC. *(IHMSC)*. 2018;246–250.
18. Li L. An Energy-Balanced Routing Protocol for a Wireless Sensor Network. *HINDAWIJ Sens*. 2018.
19. Zhao Z. An Energy-Efficient Clustering Routing Protocol for Wireless Sensor Networks Based on AGNES with Balanced Energy Consumption Optimization. *(SENSOR, Basel)*. 2018;18(11).
20. Kogilavani SV, Harsitha K, Jayapratha P, Mirthula SG. Heart disease prediction using machine learning techniques. *Int J Adv Sci Technol*. 2020;29.
21. Tama BA. Improving an Intelligent Detection System for Coronary Heart Disease Using a Two-Tier Classifier Ensemble. *Bio Med Res Int*. 2020.
22. Abdejoud FZ. A Hybrid Approach for Heart Disease Diagnosis and Prediction Using Machine Learning Techniques. *Int Conf Smart Homes Health Telematics ICOST*. 2020.
23. Al-Shammari A. An effective density-based clustering and dynamic maintenance framework for evolving medical data streams. *Sci Direct Int J Med Inform*. 2019;126.
24. Aldhyani TH. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms. *Hindawi, J Healthcare Eng*. 2020.
25. Patibandla RL, Rao BT, Krishna PS, Maddumala VR. Medical data clustering using particle swarm optimization method. *J Crit Rev*. 2020;7.
26. Mohan S, Thirumalai C, Srivastava G. Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. *IEEE Access*. 2019;7:81542–54.
27. Li G, Wu J, Li J, Wang K, Ye T. Service Popularity-based Smart Resources Partitioning for Fog Computing-enabled Industrial Internet of Things. *IEEE Trans Industr Inf*. 2018;14(10):4702–11.
28. Daniels H, Velikova M. Monotone and Partially Monotone Neural Networks. *IEEE Trans Neural Networks*. 2010;21(6):906–17.

29. Prerana THM, Shivaprakash NC. et al. Prediction of Heart Disease Using Machine Learning Algorithms- Naïve Bayes. Introduction to PAC Algorithm, Comparison of Algorithms and HDPS. 2015;3:90–99. ©IJSE.
30. Munnangi AK, UdhayaKumar S, Ravi V, et al. Survival study on deep learning techniques for IoT enabled smart healthcare system. *Health Technol.* 2023. <https://doi.org/10.1007/s12553-023-00736-4>.
31. Packiavathy SV, Gautam S et al. Internet of Things (IoT) based automated sanitizer dispenser and COVID-19 statistics reporter in a post-pandemic world. *Health Technol.* (2023). <https://doi.org/10.1007/s12553-023-00728-4>.
32. An AI-enabled Internet of things based autism care system for improving cognitive ability of children with autism spectrum disorders. (2022, May 23). Publishing Open Access research journals & papers | Hindawi. <https://www.hindawi.com/journals/cin/2022/2247675/>.
33. Houssein EH, Ibrahim IE, Hassaballah M, Wazery YM. Integration of Machine Learning and Optimization Techniques for Cardiac Health Recognition. In: Houssein, E.H., Abd Elaziz, M., Oliva, D., Abualigah, L. (eds) *Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence.* 2022;1038. Springer, Cham. https://doi.org/10.1007/978-3-030-99079-4_6.
34. Li H, Ota K, Dong M. Learning IoT in edge: deep learning for the internet of things with edge computing. *IEEE Network.* 2018;32(1).
35. Satpathy S, Mohan P, Das S, Debbarma S. A new healthcare diagnosis system using an IoT-based fuzzy classifier with FPGA. *J Supercomp.* 2019;1–13.
36. Pham TD, et al. Computational Prediction Models for Early Detection of Risk of Cardiovascular Events Using Mass Spectrometry Data. *IEEE Trans Inf Technol Biomed.* 2008;12(5):636–43