

Information Technology in Higher Education in India

Dr. Aasheesh Raizada, Associate Professor,
CDOE, Mangalayatan University, Beswan, Aligarh, UP, India,
Email: aasheesh.raizada@mangalayatan.edu.in

Dr. Anurag Mathur, Associate Professor,
Teerthanker Mahaveer Institute of Management and Technology, Moradabad (U.P.) India,
E-mail: mat.anurag@gmail.com, ORCID ID: <https://orcid.org/0000-0002-2965-7474>

Abstract

The higher education sector in India is currently undergoing a radical digital metamorphosis, transitioning from basic ICT adoption to a "Neo-Ed" model driven by autonomous and immersive technologies. This research examines the framework of **Information Technology in Higher Education in India**, evaluating how the convergence of **Agentic AI**, **Blockchain-verified credentialing**, and **Extended Reality (XR)** is redefining the traditional campus experience. With over 4.3 crore students and a Gross Enrolment Ratio of 28.4%, the Indian landscape faces a unique "technology paradox": while urban centers deploy sophisticated AI-powered adaptive learning systems and digital twins, rural institutions grapple with the digital divide. The study highlights critical government-led enablers such as the **National Digital University**, **Academic Bank of Credits (ABC)**, and the **SAMARTH ERP** system, which collectively facilitate seamless credit portability and administrative transparency. Furthermore, the shift toward stackable micro-credentials and industry-aligned "skill-first" pedagogies addresses the longstanding employability gap, where currently only 50–55% of engineering graduates are considered job-ready. By analyzing the integration of **Edge Computing** for localized data processing and **Natural Language Processing (NLP)** for multilingual content delivery, this paper provides a scalable roadmap for humanizing technology. Ultimately, the framework suggests that for India to lead the global digital revolution, it must harmonize technological sophistication with educational compassion, ensuring that digital maturity becomes a core competency rather than a temporary crisis response.

Keywords

Agentic AI & Adaptive Learning, Blockchain-Verified Credentials, NEP 2020 Digital Ecosystem, Extended Reality (XR) in Pedagogy, Digital Inclusivity & Edge Tech.

Introduction

India's higher education sector is large, diverse, and evolving rapidly. With over **30,000+ colleges** and **600+ universities**, India has one of the world's biggest systems of tertiary education. The government's aim is to widen access, improve quality, and make Indian institutions globally competitive. However, structural constraints, resource limitations, regional disparities, and sociopolitical realities pose challenges.

In this milieu, Information Technology (IT) is both a key enabler and a disruptor. The Indian government has launched multiple initiatives (e.g. National Digital University, Academic Bank of Credits, ICT in education programs) to leverage IT. But adoption and impact remain uneven across geographies, institution types, and funding models.

This article discusses how IT is shaping higher education in India: its prospects, constraints, case examples, and strategies to maximize its benefits in the Indian setting.

Indian Landscape: Policies, Initiatives & Enablers

To understand how IT can succeed in Indian higher education, it's helpful to know the policy infrastructure and initiatives already in place.

Key National Initiatives & Policies

1. National Education Policy (NEP) 2020

NEP 2020 strongly emphasizes digital learning, blended modes, multi-entry/exit, stackable credentials, use of open educational resources (OERs), and technology-enabled learning.

2. National Digital University (NDU)

India's first digital university launched in 2023 to offer online courses via a "hub-and-spoke" model. Students can earn credits from partner institutions, with multiple exit options.

3. Academic Bank of Credits (ABC)

A system to allow students to accumulate, store, and transfer academic credits across institutions, facilitating flexible learning paths and mobility.

4. Rashtriya Uchchatar Shiksha Abhiyan (RUSA)

A centrally sponsored scheme to strengthen state higher education, promote equity, and improve institutional quality.

5. National Academic Depository (NAD)

A digital repository for academic credentials (degrees, certificates), allowing secure issue, verification, and storage of credentials in digital form.

6. SWAYAM & MOOCs

Government's MOOCs platform and related programs extend online course offerings for higher education learners across India.

These frameworks provide a scaffolding for IT adoption. But their effective deployment depends on ground realities.

Contextual Challenges and Constraints in India

While the potential is great, India faces some distinctive challenges when applying IT in higher education. Many of these stem from structural, socio-economic, and infrastructural realities.

1. Digital Divide & Infrastructure Gaps

- **Unequal Access to Internet & Devices**

Many students from rural or remote areas still lack reliable broadband, or access to good devices (laptops, tablets).

- **Power & Connectivity Issues**

Frequent power outages, weak Wi-Fi in campuses, or low bandwidth, especially in Tier-2 / Tier-3 towns and rural colleges.

- **Legacy Infrastructure**

Older colleges often have outdated computer labs, poor maintenance, or no scalable IT backbone.

2. Resource & Funding Constraints

- Many state or smaller colleges operate on tight budgets, which limit their ability to invest in modern infrastructure, software licenses, maintenance, or staff.

- Sustaining software upgrades, security, cloud costs, and training is often a recurring burden not well budgeted.

3. Faculty Preparedness & Pedagogical Skill Gaps

- A significant portion of faculty (especially in less privileged institutions) may not have been trained in digital pedagogy, online teaching best practices, instructional design, or use of educational technologies.
- Resistance to change, lack of time to rework courses, or skepticism of online modes are common.

4. Inequalities Across Types of Institutions

- Top-tier, well-funded institutions (IITs, NITs, central universities) tend to adopt advanced IT more rapidly, while many affiliated colleges (especially in remote or socio-economically backward regions) lag behind.
- The disparity between public and private, or urban and rural institutions remains wide.

5. Quality Assurance, Accreditation & Regulatory Complexities

- Ensuring online/hybrid courses meet academic rigour, alignment with regulatory norms (e.g. UGC, AICTE) and accreditation standards remains complex.
- Institutions sometimes face ambiguity in regulation for online programmes, credit transfer, and MOOCs under regulatory frameworks.

6. Data Privacy, Security & Trust

- Handling student data, examination systems, credential verification demands robust security, encryption, and trust frameworks.
- Past incidents of data exposure and cyber attacks (e.g. educational apps or institutional websites) erode user trust.

7. Management, Governance & Institutional Culture

- Many colleges have bureaucratic governance structures and limited autonomy or agility to adopt new systems quickly.
- Silos between academic, administrative, and IT units hamper holistic design and integration of systems.

8. Assessment Integrity & Academic Integrity in Online Modes

- Safeguarding exams against cheating, plagiarism, misuse of AI becomes more challenging in remote or online modalities.
- Students may resort to unfair means, and verifying identity or authenticity is harder remotely.

9. Language, Diversity & Inclusion

- India is multilingual. Digital content is often in English (or dominant regional languages), which may disadvantage students whose first language is different.
- Ensuring accessibility for differently-abled students (e.g. screen readers, captions, alternate formats) is often overlooked.

10. Low Completion / Engagement in MOOCs / Digital Courses

- MOOC platforms (e.g. SWAYAM) often see low completion rates and low engagement, indicating challenges in sustaining motivation, support, and follow-up.

These constraints mean that a “one-size-fits-all” technology rollout usually fails. Success in India requires sensitivity to local context, resources, and scale.

Roles & Use Cases of IT in Indian Higher Education

Despite challenges, many institutions in India are already deploying IT across multiple domains. Below are common use cases and illustrative examples.

Teaching, Learning & Curriculum

- **Blended Learning & Flipped Classrooms**
Many institutions now mix face-to-face sessions with online modules, video lectures, quizzes, and assignments via LMS.
- **Lecture Capture, Virtual Classrooms & Webinars**
Use of video conferencing tools (Zoom, Microsoft Teams), recorded lectures, virtual labs to complement in-person instruction.
- **Adaptive & Personalized Learning**
Some institutions experiment with AI-driven tutoring systems that recommend remedial modules or reading material based on student performance.
- **Open Educational Resources (OERs) & MOOCs**
Use of freely available resources, open textbooks, and integrating SWAYAM or other MOOC content into curricula.

Student Services, Support & Engagement

- **Student Portals & Mobile Apps**
Integrated portals where students view results, register courses, pay fees, get alerts, etc.

- **Chatbots & Helpdesk Automation**

Some universities deploy chatbots for frequently asked questions, registration help, syllabus queries, grievance redressal.

- **Online Mentoring & Counseling**

E-mentoring platforms, e-advising, tracking student progress and intervening early for those lagging.

Administrative & Back-office Systems

- **Student Information Systems (SIS), ERP Solutions**

Automating admissions, registration, attendance, financials, HR, timetabling.

- **Library Automation & Digital Repositories**

Institutional repositories, digital libraries, e-journal access, and inter-library systems.

- **Examination & Assessment Systems**

Online test delivery, proctoring, grading tools, plagiarism detection, and outcome-based assessment systems.

Example: Kerala University of Fisheries and Ocean Studies (KUFOS) is implementing an AI-powered exam management system “QnSmart i 4.0” aligned with Outcome-Based Education (OBE).

Research, Collaboration & Infrastructure

- **High-Performance Computing & Research Platforms**

For STEM and data-intensive disciplines, institutions use HPC clusters, data analysis platforms, labs with simulation software, etc.

- **Collaboration Tools & Virtual Labs**

Tools for joint research across institutions, remote instrumentation, shared labs, virtual experiments.

Credentialing, Verification & Digital Credentials

- **National Academic Depository (NAD)**

As mentioned, digital storage and verification of academic credentials reduces forgeries and ease verification.

- **Blockchain & Secure Credentialing**

Some experiments explore blockchain-based credential systems to ensure tamper-proof and verifiable academic records.

Analytics, Dashboards & Decision Support

- Institutions are beginning to build **institutional analytics offices** to monitor enrollment, attrition, student performance, resource utilization, and to feed data-driven policies.

- Dashboards for leadership and deans to monitor departmental KPIs, resource planning, forecasting.

Case Examples & Success Stories in India

A few real or illustrative examples in India:

1. **Vignan University's 5G Innovation Centre**

Vignan University (AP) has launched a 5G lab and Global Digital Innovation Centre to support project-based learning, IoT experimentation, and real-time collaboration. **National Digital University (NDU)** As India's first virtual university, NDU's hub-and-spoke model promotes cross-institutional course offerings and credit transfer.

2. **Adoption of AI in Exams**

KUFOS's AI-based exam system (QnSmart i 4.0) is a noteworthy move toward intelligent assessment.

3. **ICT in Himalayan Universities**

A comparative SWOT study of universities in the Western Himalayan region assessed ICT adoption, infrastructure, challenges, and opportunities in difficult terrains.

4. Academic Depository Pilot

NAD is piloted in collaboration with CBSE and some universities to issue digital credentials, reducing paperwork and fraud risk.

These examples illustrate that while pilot projects and flagship institutions are pushing boundaries, scaling broadly remains the challenge.

Strategic Recommendations: What India Should Do

To maximize the benefits of IT in higher education, especially in a diverse and constrained setting like India, the following strategies are crucial.

1. Tiered & Contextual Implementation

- Differentiate strategies for **flagship universities** vs **state colleges**, **urban** vs **rural**, **well-funded** vs **resource-constrained**.
- Use modular, scalable solutions — not always the most expensive, but suited to the context.

2. Capacity Building & Faculty Development

- Invest heavily and continuously in **faculty training** on digital pedagogy, instructional design, hybrid teaching, assessment design.
- Establish **centres for teaching & learning** in institutions to support faculty, host workshops, share best practices.

3. Partnerships & Consortium Models

- Encourage **state-level or regional consortia** for shared infrastructure (cloud, data centers, LMS licenses), cost sharing, peer support.
- Collaborate with EdTech firms, MOOC providers, open-source communities, and international partners.

4. Interoperability, Standards & Open Architectures

- Adopt open standards (e.g. LTI, xAPI, IMS) so that LMS, analytics systems, credential systems, SIS can interoperate.
- Favor modular or microservices-based architecture rather than monolithic, closed systems.

5. Focus on Equity, Inclusion & Localisation

- Develop content in local languages, multilingual interfaces, and accessible formats for diverse learners.
- Provide bridging support (e.g. device loans, internet stipends) to students in underprivileged communities.
- Ensure accessibility (for differently abled students), closed captioning, screen-reader support.

6. Robust Data Governance, Privacy & Security

- Develop a **national / institutional data governance framework**—defining data ownership, stewardship, access, consent, anonymization.
- Use encryption, role-based access, incident response strategies, regular audits, and security awareness training.
- Build trust by being transparent about data use and giving users control over their data.

7. Assessment Innovation & AI-Aware Design

- Design assessments that are less dependent on rote tasks and more on project work, open-ended assignments, portfolios, peer evaluation which are less susceptible to cheating.
- Incorporate **AI literacy** into courses—teaching students how to responsibly use AI, detect bias, and critically evaluate AI outputs.
- Use **AI-assisted proctoring** or identity verification cautiously, balancing security with privacy concerns.

8. Monitoring, Evaluation & Iteration

- Set up feedback loops: collect data on usage, learning outcomes, system issues, user satisfaction; iterate system design.
- Conduct pilots before full-scale rollout, study performance, then scale in waves.

9. Sustainable Funding & Total Cost Modeling

- Beyond capital grants, institutions need recurring funding for maintenance, cloud costs, licenses, staff, support.
- Use financing models such as public-private partnerships, grants, donations, and internal revenue (e.g. offering continuing education courses) to sustain digital infrastructure.

10. Leverage Government & Policy Support

- Encourage state and central governments to subsidize connectivity (e.g. better rural broadband), provide digital infrastructure grants, and incentivize adoption in underserved areas.
- Clarify and streamline regulations for online education, credit transfer, credential recognition, and digital degrees.

Potential Roadmap for an Indian University

Here's a simplified roadmap an Indian university (or college) might follow to adopt and scale IT meaningfully:

Phase	Goals / Focus	Key Actions
Pilot & Foundation	Test, learn, and build capability	Select a few courses for hybrid delivery; set up LMS; train a small cohort of faculty; pilot digital assessments
Integration & Expansion	Expand to more courses / departments	Expand LMS modules, library content, virtual labs, integrate student portal, chatbots
Analytics & Support	Deploy analytics & intervention systems	Build dashboards, early-alert systems, integrate student support
Digital Credentialing & Mobility	Embrace credit transfers, ABC, NAD	Map courses to credit systems, issue digital credentials, partner with other institutions
Innovation & Scaling	Use advanced IT, AI, immersive tech	Pilot AR/VR labs, AI tutors, advanced proctoring, blockchain credentialing
Sustain & Iterate	Institutionalize digital practice	Budgeting for maintenance, governance structures, continuous faculty development, regular audits & feedback

Risks, Cautions & Mitigations (India-Specific)

- **Overemphasis on Technology Over Pedagogy**
Technology should support goals, not drive methods.
- **Security & Data Breach**
Indian apps and portals have previously been subject to vulnerabilities; robust security is nonnegotiable.
- **Unequal Adoption & “Digital Elitism”**
There's a danger that IT-enhanced education becomes accessible only to better-funded institutions and wealthier students.
- **Sustainability Risk**
Projects funded through one-time grants may fail once funding ends.
- **Resistance & Digital Fatigue**
Stakeholders may resist change or experience fatigue with hybrid/online modes.

- **Regulatory Uncertainty**

In some cases, the legal/UGC/AICTE framework for fully online degrees or hybrid delivery is still evolving.

Mitigation requires stakeholder engagement, phased rollouts, continuous training, risk assessments, and aligning with national policies.

The Institutions That Will Succeed

In India's dynamic higher-education landscape, institutions that stand out will not merely deploy technology — they will **humanize it, contextualize it, and institutionalize it**. The following six principles define the success path for sustainable IT adoption in higher education.

1. Place Pedagogy and Learners at the Center, Not Technology

Successful institutions recognize that technology is an *enabler*, not the *end goal*. They begin with a fundamental question — “*How can technology enhance learning outcomes, engagement, and inclusivity?*” rather than “*Which new tool can we buy?*”

- **Pedagogical Alignment:**

Every digital tool, LMS feature, or platform should serve a clear educational purpose — active learning, problem-solving, collaboration, or creativity.

- **Student-Centered Design:**

Content and assessments must cater to diverse learning styles and paces. For example, using microlearning videos, gamified quizzes, or virtual simulations can enhance engagement and comprehension.

- **Faculty Empowerment:**

Teachers should be supported to experiment with hybrid models like *flipped classrooms, project-based learning, or outcome-based education (OBE)*.

- **Feedback Loops:**

Student feedback on digital courses should guide improvements — ensuring the human experience remains central.

Institutions that anchor all digital initiatives in pedagogy and student learning are the ones that see real transformation, not just automation.

2. Build Capacity from the Ground Up (Faculty, Staff, Students)

Technology adoption without *people readiness* inevitably fails. The true strength of an institution lies in its digitally competent community.

- **Faculty Development:**

Regular, structured training programs on digital pedagogy, LMS usage, data analytics for learning, and online assessment tools should be institutionalized.

Many Indian universities have started “Teaching & Learning Centres” or “Academic Staff Colleges” to continuously upgrade faculty skills.

- **Administrative Upskilling:**

Non-teaching staff must be trained in using ERP, digital records, cybersecurity practices, and analytics dashboards. This reduces dependency and enhances efficiency.

- **Student Digital Literacy:**

Students need orientation on using LMS, research databases, online etiquette, cybersecurity awareness, and responsible AI usage.

For first-generation learners or those from rural areas, this training is essential to bridge the digital confidence gap.

- **Peer Learning Communities:**

Creating “digital ambassadors” or “student tech mentors” can accelerate learning within the campus.

Capacity-building must therefore be treated as a *continuous investment*, not a one-time workshop.

3. Embrace Modularity, Standards, and Interoperability

The future of higher education lies in **integrated ecosystems**, not isolated software. Institutions that adopt modular and interoperable systems gain agility, scalability, and long-term resilience.

- **Modular Systems:**

Build or choose systems that allow components (LMS, SIS, digital library, ERP, analytics) to evolve independently and integrate smoothly through APIs.

- **Open Standards:**

Use international education technology standards — e.g., *LTI (Learning Tools Interoperability)*, *xAPI*, *IMS Global* — to ensure future compatibility and vendor flexibility.

- **Data Interoperability:**

Ensure that student data, learning outcomes, and credential records can flow securely across platforms like the *Academic Bank of Credits (ABC)* or *National Academic Depository (NAD)*.

- **Future-Proofing:**

Modular design makes it easy to integrate upcoming technologies such as AI tutors, virtual labs, or blockchain credentialing without replacing entire systems.

By embracing openness and standardization, institutions avoid vendor lock-ins and build scalable, adaptable digital ecosystems.

4. Prioritize Equity, Inclusion, and Accessibility

Technology can bridge divides — or deepen them. Institutions that consciously design for equity ensure that no student is left behind.

- **Bridging the Digital Divide:**

Provide device loan programs, campus Wi-Fi zones, or subsidized data packages for low-income students. Several universities have successfully implemented *Digital Inclusion Funds* or device banks post-pandemic.

- **Multilingual & Localized Content:**

India’s linguistic diversity demands learning materials in local languages and bilingual formats. NEP 2020 supports this localization drive.

- **Accessibility for All:**

Ensure platforms comply with *WCAG accessibility standards* — including screen readers, subtitles, voice inputs, and adjustable font sizes.

- **Inclusive Pedagogy:**

Promote gender-sensitive, culturally aware, and socially inclusive content that reflects diverse identities.

An inclusive digital campus is not just about providing access to technology but creating an environment where *everyone can succeed through technology*.

5. Govern Data Ethically, with Trust and Transparency

With digitization comes data — and with data comes responsibility. Ethical data governance is fundamental to sustaining trust among students, faculty, and society.

- **Data Privacy & Security:**
Protect student and staff data through encryption, anonymization, consent-based sharing, and strong cybersecurity protocols.
- **Transparency in Use:**
Clearly communicate how institutional data is collected, analyzed, and used — whether for analytics, AI models, or administrative decisions.
- **Avoid Algorithmic Bias:**
AI-based analytics systems used for admissions, performance tracking, or predictive modeling must be periodically audited for fairness and non-discrimination.
- **Accountability Framework:**
Appoint *Data Stewards* or a *Data Governance Committee* to oversee compliance, privacy policies, and ethical usage.

Trust is the currency of digital transformation. Institutions that treat data ethically will enjoy enduring credibility among all stakeholders.

6. Think Long-Term — Not Just in Pilot Projects, but in Sustainable Scaling

The hallmark of visionary institutions is their ability to move beyond short-term digital experiments into long-term, scalable transformation.

- **Strategic Planning:**
Develop a *Digital Transformation Roadmap* aligned with institutional goals — covering infrastructure, training, finance, and governance.
- **Financial Sustainability:**
Secure continuous funding through blended models: government grants, partnerships, alumni endowments, or revenue from online programs.
- **Monitoring & Evaluation:**
Set clear Key Performance Indicators (KPIs) — adoption rates, learning outcomes, satisfaction metrics, cost savings — and evaluate them periodically.
- **Iterative Scaling:**
Start small, learn fast, refine, and scale systematically. Avoid abrupt or top-down rollouts that cause fatigue or resistance.
- **Institutionalization:**
Digital transformation should be embedded in policies, job roles, and culture — not dependent on individual champions or temporary grants.

By thinking long-term, institutions ensure that digital maturity becomes a **core competency**, not a temporary response to crisis.

Conclusion

The evolution of India's higher education sector is no longer defined by simple digitization but by a fundamental "humanization" of technology that prioritizes resilience and learner-centered ecosystems. As institutionalized through frameworks like the National Education Policy (NEP) 2020, the current shift moves beyond short-term digital experiments toward sustainable, long-term transformation. By 2026, the integration of Agentic AI and Deep Tech has moved from the periphery to the core infrastructure, enabling scalable personalization that targets individual student needs while reducing the administrative burden on educators. This transition from "AI-enabled"

to "deep tech-driven" systems ensures that the quality of education is a shared community resource rather than a privilege of the few, effectively bridging the urban-rural divide through localized AI models and digital twin research infrastructures. Ultimately, the hallmark of visionary Indian institutions lies in their ability to blend technological sophistication with educational compassion. The emergence of a "credit-based learning economy"—supported by the Academic Bank of Credits (ABC) and lifelong academic identities like the APAAR ID—empowers students with unprecedented flexibility to navigate global and multidisciplinary pathways. To maintain this momentum, future strategies must focus on securing continuous funding through blended models and embedding digital maturity as a core competency within institutional policies. By anchoring innovation in the core purpose of education, India is uniquely positioned to lead the global revolution in educational technology, fostering a workforce that is not only technically proficient but also ethically grounded and socially responsible.

References

1. **Antonesi, G., Cioara, T., Anghel, I., Michalakopoulos, V., Sarmas, E. and Toderean, L. (2025)** 'From Transformers to Large Language Models: A systematic review of AI applications in the energy sector towards Agentic Digital Twins', *arXiv preprint*, arXiv:2506.06359. (Note: Relevant for technical framework development in Indian HEIs).
2. **Basma, M. (2025)** 'Leveraging artificial intelligence to enable sustainable urban development through the creation of smart and environmentally friendly carbon-free cities', *Scientific Reports*, 15(1), pp. 410-425. (Note: Explores the role of AI in building smart campus infrastructure).
3. **Desale, V.J. (2025)** 'Impact of NEP 2020 on higher education', *International Education and Research Journal*, DOI: <https://doi.org/10.5281/zenodo.15582792>.
4. **EY Parthenon (2025)** *FICCI-EY-P AI Adoption Survey 2025: Harnessing AI in higher education*. [Online] Available at: https://www.ey.com/en_in/insights/education (Accessed: 23 January 2026).
5. **Jha, R., Jha, S. and Jha, A. (2025)** 'NEP and digital transformation in higher education', *Indian Journal of Digital Learning*, 13(2), pp. 75-89.
6. **Kamra, S. (2025)** 'The Impact of Artificial Intelligence on Education in India', *LPU Blog*, 28 May. [Online] Available at: <https://www.lpu.in/blog> (Accessed: 23 January 2026).
7. **Kumar, R., Sharma, L. and Bose, T. (2025)** 'Digital governance in NEP: Towards a data-driven education system', *Journal of Educational Policy and Leadership*, 10(4), pp. 98-112.
8. **Marshall, A., Reddy, B. and Schuetze, H. (2024)** 'Technology in Higher Education: Past, Present and Future', *Telangana Journal of Higher Education*, 1(1), pp. 1-37.
9. **Mishra, A. (2025)** 'Online learning and digital pedagogy under NEP', *Journal of Digital Education*, 11(3), pp. 99-113.
10. **Rathi, M. (2024)** 'NEP 2020 Revisiting, Reimagining & Revamping Higher Education in India: Vision 2047', *MLAC Journal for Arts, Commerce and Sciences*, 2(3), pp. 2-6.
11. **Sen, R. and Kalita, N. (2025)** 'Digital and Online Education: NEP 2020 and its Critique', *Jindal Journal of Public Policy*, 8(II), pp. 1-11.
12. **Tata Consultancy Services (2026)** *Emerging Higher Education Tech Trends in 2026: AI, GenAI, and Extended Reality*. [Online] Available at: <https://www.tcs.com/what-we-do/industries/education> (Accessed: 23 January 2026).