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Abstract 

Accurate diagnosis of bearing faults is critical for ensuring the reliability and safety of industrial electric 

motors, particularly under complex operating conditions where traditional signal processing techniques 

often exhibit limited robustness. To overcome these challenges, this study proposes an advanced deep 

learning–based diagnostic framework that integrates signal decomposition, feature optimization, and 

temporal modeling for intelligent bearing fault identification. Vibration signals acquired from rotating 

machinery are first processed using Ensemble Empirical Mode Decomposition (EEMD) to effectively 

suppress noise and isolate meaningful intrinsic mode functions. Relevant features are then selected 

based on correlation coefficient analysis, and Principal Component Analysis (PCA) is applied to reduce 

feature dimensionality while preserving essential fault-related information. The refined feature set is 

subsequently fed into a Long Short-Term Memory (LSTM) network enhanced with Batch 

Normalization to capture temporal dependencies and stabilize the training process. The inclusion of 

Batch Normalization improves convergence behavior and enhances model generalization under varying 

operating conditions. Experimental evaluation demonstrates that the proposed framework achieves 

superior diagnostic performance, reaching 100% classification accuracy and outperforming 

conventional fault diagnosis approaches. Owing to its robustness, low sensitivity to noise, and strong 

temporal learning capability, the proposed method provides an effective and reliable solution for real-

time bearing fault diagnosis in industrial motor applications. 

Keywords – Fault diagnosis, EEMD, PCA, Batch Normalization,  LSTM 

1.  Introduction 

Machine fault diagnosis is a critical process in industrial maintenance that identifies and 

classifies mechanical problems within equipment, including failures like gear damage, stator 

malfunctions, and bearing faults. The goal of machine fault diagnosis is to ensure that machinery 

remains operational and efficient, while reducing risks such as production stoppages, economic losses, 

and potential threats to human safety. Over the past few decades, condition monitoring systems based 

on expert systems and artificial intelligence (AI) have advanced significantly, providing more reliable 

fault detection capabilities.  
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The introduction of machine learning (ML) techniques has revolutionized the field of machine 

fault diagnosis. Traditional methods often relied on manual feature extraction, but ML techniques can 

automatically learn and extract relevant features from raw data, making fault detection more efficient 

and accurate [1]. Among the various ML models used in fault diagnosis, Support Vector Machines 

(SVMs) and Artificial Neural Networks (ANNs) have shown remarkable success. These models 

typically work by transforming vibration signals from the time domain into the frequency domain using 

techniques such as Fast Fourier Transform (FFT). Once in the frequency domain, key features are 

extracted and used to classify different types of faults [2]. Research has demonstrated that incorporating 

multiple hidden layers in neural networks significantly improves fault detection accuracy. For example, 

fault classification accuracy rates in rotating machinery have been shown to increase from 88% to as 

high as 95% when deep learning architectures are used [3]. Principal Component Analysis (PCA) is 

another powerful technique used to improve the performance of machine learning models. By reducing 

the dimensionality of the feature space, PCA eliminates redundant data and makes the training process 

more efficient. This is particularly beneficial in models like multiclass SVMs, where reducing the 

feature space helps improve classification accuracy while reducing computational complexity. In 

addition to SVMs and ANNs, Random Forest (RF) algorithms have been applied for fault classification 

in rotating machines [4-6]. RF models use multiple decision trees to classify faults based on features 

extracted from methods like EEMD and wavelet decomposition. The ensemble nature of RF provides 

more robust and accurate fault classification compared to single decision tree models. 

One of the most promising advancements in machine fault diagnosis is the development of 

hybrid machine learning architectures. These architectures combine multiple models to improve the 

accuracy and reliability of fault classification. A common approach is to use a two-stage architecture 

where the first stage focuses on dimensionality reduction, and the second stage performs the actual 

classification. For example, Recurrent Neural Network (RNN)-based variational autoencoders are often 

used in the first stage to reduce the dimensionality of vibration signals [7-8]. In the second stage, 

algorithms such as Random Forest, SVM, XGBoost, Long Short-Term Memory (LSTM) networks, and 

Gated Recurrent Units (GRUs) are applied to classify the faults based on the reduced feature set. These 

integrated architectures offer several advantages [9-11]. By using dimensionality reduction in the first 

stage, the models become more efficient, requiring less computational power while still maintaining 

high accuracy. The use of advanced classifiers like LSTMs and GRUs in the second stage allows the 

models to capture temporal dependencies in the vibration signals, further improving fault classification 

accuracy. 

The key contributions of this paper are as follows: 

1. The raw vibration signal is initially analyzed in both the time and frequency domains to capture 

fault-related characteristics. Ensemble Empirical Mode Decomposition (EEMD) is then applied to 

decompose the signal into multiple intrinsic mode functions (IMFs), enabling effective suppression of 

noise and non-stationary components. To retain only informative fault features, a correlation-

coefficient-based selection strategy is employed, where IMFs with stronger relevance to fault conditions 

are preserved. 

2. The selected IMFs form a high-dimensional feature set that may contain redundant information. 

To address this issue, Principal Component Analysis (PCA) is applied to reduce the dimensionality of 

the feature space while preserving the most significant fault-sensitive information. Batch Normalization 

is incorporated during model training to stabilize feature distributions and accelerate convergence, 

ensuring improved learning efficiency. 

3. An LSTM-based deep learning model is subsequently developed using the optimized feature 

set to capture temporal dependencies inherent in vibration signals. The diagnostic performance of the 

proposed framework is evaluated and compared with existing machine learning approaches, 

demonstrating improved accuracy and computational efficiency in rolling bearing fault classification. 
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The paper is organized as follows: Section 1 presents an introduction to various fault diagnosis 

approaches. Section 2 outlines the methodology for bearing fault classification. Section 3 analyses the 

results and discussion. and Section 4 concludes the work. 

3.   Methodology 

The bearing vibration signals used in this study were obtained from the data repository [15] and 

collected from both the fan-end and drive-end locations under healthy and various faulty operating 

conditions. The experiments were conducted at multiple rotational speeds, namely 1730 rpm, 1750 rpm, 

1772 rpm, and 1797 rpm. These vibration signals exhibit significant noise contamination and quasi-

stationary behavior, which can adversely affect fault identification accuracy. Therefore, as illustrated 

in Fig. 1, an Ensemble Empirical Mode Decomposition (EEMD)–based denoising strategy is employed 

as the initial preprocessing step. The original vibration signals are decomposed into a finite number of 

intrinsic mode functions (IMFs) along with a residual component. IMFs characterized by relatively low 

non-stationarity and strong correlation with the original signal are selected as informative features. 

The resulting feature set is inherently high-dimensional, motivating the use of Principal 

Component Analysis (PCA) to eliminate redundant information and reduce computational complexity. 

Initially, eight feature components are extracted from the selected IMFs; however, to mitigate 

multicollinearity and improve diagnostic reliability, PCA is applied to project the feature space into a 

lower dimension. The eight features are effectively reduced to two principal components while 

preserving the majority of the signal’s discriminatory information. These compact representations are 

subsequently provided as sequential inputs to the Batch Normalization–based LSTM model for accurate 

classification of bearing health conditions. The corresponding rolling bearing fault categories are 

summarized in Table 1. 

 

 

 

 

             Fig. 1 Combinational framework for classification of bearing faults 

                                          Table 1 Rolling Bearing State 

   
3.1 Data Pre-processing and Feature Preparation using EEMD 

The raw vibration signals acquired from the fan-end (FE) and drive-end (DE) bearings under different 

operating conditions and rotational speeds are first examined in both the time and frequency domains. 

Frequency-domain analysis of vibration signals is widely adopted for bearing fault diagnosis, as it 

enables the identification of defect-related frequency components. This is achieved by applying the 

Bearing State (Approx Motor speed (rpm) = 1730,1750,1772,1797 

No. Fault Diameter (inches) Fault Location 

1 - Normal Condition (NC) (Class 0) 

2 0.007 Inner Race Fault (IRF007) (Class 1) 

3 0.021 Inner Race Fault (IRF021) (Class 2) 
4 0.007 Outer race Fault (ORF007) (Class 3) 

5 0.007 Outer Race Fault @ (6:00)am  (ORF007@6) (Class 4) 

6 0.014 Outer Race Fault @ (12:00)am (ORF014@12) (Class 5) 
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Fast Fourier Transform (FFT) to time-domain signals, thereby revealing fault signatures in the 

frequency–amplitude spectrum. 

In this work, the original vibration signals are transformed into the frequency domain prior to further 

processing. Ensemble Empirical Mode Decomposition (EEMD) is then applied to the FE and DE 

bearing signals collected at four distinct rotational speeds under healthy and faulty conditions. Through 

EEMD, each vibration signal is adaptively decomposed into a set of intrinsic mode functions (IMFs) 

along with a residual component, effectively mitigating mode mixing and reducing noise interference. 

High-frequency components are progressively separated across lower-order IMFs, with early IMFs 

capturing dominant fault-related frequencies, albeit with some noise contamination, while higher-order 

IMFs provide improved isolation of characteristic frequency components. 

For subsequent analysis, eight vibration signals of length 15,000 samples are considered for each 

bearing condition. Each signal is decomposed into 14 IMF components, resulting in a high-dimensional 

feature representation suitable for noise suppression and non-stationary signal handling. Consequently, 

the constructed IMF-based feature dataset has a dimensional structure of [6×14×8×15000], where 6 

denotes the bearing health conditions, 14 represents the number of IMFs, 8 corresponds to the vibration 

signals, and 15,000 indicates the sample length of each signal. 

3.2 Feature Selection and Extraction  

Any well-developed classification model relies heavily on being trained with relevant and 

significant features. It is crucial to avoid the capture of insignificant patterns by the model due to noise, 

which underscores the importance of appropriate feature selection. While EEMD offers benefits, it also 

increases the number of input signals, posing a challenge. To address this, the correlation relationship 

between all decomposed IMF signals and the actual raw signals is computed to select the best de-noised 

and highly correlated IMFs with the original signal. The highest IMF coefficient values are selected as 

the best features for fault classification. This process is repeated for all types of fault conditions at 

different speeds. Ultimately, the application of EEMD and feature selection using correlation 

coefficients yields a set of 8 IMF features, each with a sample length of 15,000 for six bearing conditions 

[6*8*15000].                                               

PCA was applied to the initial feature space of [6* 8*15000] to reduce dimensionality and 

eliminate data redundancy. All selected IMFs were reduced to two principal components, as they 

captured most of the variance in the data, resulting in a reduced data size of [6* 2*15000] for each 

bearing condition. The reduced feature vectors for all six conditions were then used as input to train the 

BN Based LSTM classifier mode 

3.3 LSTM model 

Relevant features are extracted from preprocessed data using the EEMD technique and the Correlation 

Coefficient. These features are then fed into a neural network to identify the health state of roller 

bearings. Figure 2 shows the architecture of the combined LSTM model, featuring both a feature 

extractor and a classifier module. The reduced features fed into the LSTM layer, which captures 

temporal dependencies in the data, thereby improving fault detection accuracy. 
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Fig. 2 Combinational framework of proposed model 

3.4 Combinational Framework of Bearing Condition 

The fault diagnosis algorithm is divided into two sections. The first is to capture the dynamic 

information from vibrational data and the second is to develop a deep learning classifier model for 

classifying the various types of bearing faults under different conditions. The following steps has been 

taken for rolling bearing fault diagnosis using the BN-based LSTM model. The details are as follows 

1. Sensor data are first collected from the bearing system under different operating and fault 

conditions. The acquired signals are subsequently preprocessed and normalized to a fixed range 

between 0 and 1 to ensure uniform scaling and numerical stability. 

2. Ensemble Empirical Mode Decomposition (EEMD) is applied to the vibration signals to 

perform adaptive time–frequency analysis, enabling effective handling of non-stationary 

characteristics and noise components. 

3. Relevant fault-sensitive features are selected using a correlation coefficient–based method, 

retaining only those intrinsic mode functions (IMFs) that exhibit strong correlation with the 

original vibration signals. 

4. Principal Component Analysis (PCA) is employed to reduce the dimensionality of the selected 

IMF feature set, preserving the most informative components associated with six different 

bearing fault categories while eliminating redundant features. 

5. The prepared dataset is partitioned into training, validation, and testing subsets to ensure 

unbiased model development and performance assessment. 

6. Batch Normalization is incorporated into the learning framework to stabilize feature 

distributions, accelerate convergence, and enhance the generalization capability of the neural 

network. 

7. A Batch Normalization–enhanced Long Short-Term Memory (LSTM) neural network is trained 

using the optimized feature set to learn temporal dependencies and classify bearing fault 

conditions. 

8. Model performance is evaluated using multiple metrics, including classification accuracy, 

training and validation loss, confusion matrix analysis, receiver operating characteristic (ROC) 

curves with area-under-the-curve (AUC) values, and additional performance indices. 

 

LSTM 1 

LSTM 2 

LSTM 3 

 

 

LSTM 

50 

Fl
at

te
n

ed
 

Fu
lly

 C
o

n
n

ec
te

d
 D

e
n

se
 la

ye
r 

  

D
ro

p
o

u
t 

C
la

ss
if

ic
at

io
n

 o
f 

B
ea

ri
n

g 

C
o

n
d

it
io

n
s 

In
p

u
t 

  



 
MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

ISSN: 1053-7899  
Vol. 35  Issue 2,   2025, Pages: 1303-1311 

 

 
https://mswmanagementj.com/ 

1308 

This framework includes an input layer, hidden layers, dense layers, a softmax layer, and an output 

layer. The extracted data is fed into the neural network, with each LSTM layer comprising 50 neurons. 

The LSTM model is trained with the following hyperparameters: Adam optimizer for its efficiency and 

adaptive learning rate, mean squared error loss function, and a batch size of 50 for balanced memory 

usage and convergence. A dropout rate of 0.2 is used to mitigate overfitting, while the model undergoes 

50 epochs of training with a learning rate of 0.01. Softmax activation is employed for classification. 

The LSTM network is developed and trained using Python with the Keras package and TensorFlow 1.0, 

leveraging their robust features for effective model development and training. 

4. Results and Discussion 

This study develops a Batch Normalization–based stacked LSTM (BN-LSTM) network for multi-class 

rolling bearing fault classification and systematically evaluates its performance. A confusion matrix is 

used to compare predicted and true bearing conditions, where correct classifications lie along the 

diagonal and misclassifications appear off-diagonal. As shown in Fig. 3, the BN-LSTM accurately 

classifies bearing classes 0–5, enabling the computation of key performance metrics. Owing to its ability 

to automatically learn temporal fault features, the model eliminates the need for manual feature 

extraction, with quantitative results summarized in Table 2. Further validation using ROC analysis (Fig. 

4) shows curves strongly biased toward the true positive rate, confirming the high sensitivity, 

robustness, and reliability of the proposed BN-LSTM framework for multi-class bearing fault diagnosis.     

                                                                                    

               Fig. 3 Confusion Matrix of Proposed BN based LSTM 

                                              

     The classification accuracy thus obtained using BN based LSTM model has been compared 

with other machine learning and deep learning models used in the literature.  Table 2 shows the 

classification accuracy of the proposed model compared with other existing work cited in the literature. 
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Table 2 Comparison of Classification Accuracy  

 

 

 

 

 

 

 

 

 

                            

Fig. 4 ROC Curves of Classes Predicted by BN Based LSTM Model  

The Area Under Curve of ROC for each Class 0, Class 1, Class 2, class 3, class 4 and class 5 

deduced as 0.97, 0.95 0.87, 0.93, 0.83 and 0.90 respectively (Fig. 4) also validates the model’s ability 

to correctly classify the condition that bearings belongs to.  Above all, confirms the suitability of the 

proposed BN based LSTM model for classification of bearing condition from the raw vibration data.     

6. Conclusion 

Rolling element bearings are critical components in rotating machinery and are prone to degradation 

under harsh operating conditions. This work proposes an intelligent bearing fault classification 

framework using a Batch Normalization–based Long Short-Term Memory (BN-LSTM) network. 

Ensemble Empirical Mode Decomposition (EEMD) is employed to handle noise and non-stationary 

vibration signals by extracting fault-relevant intrinsic mode functions, while Principal Component 

Analysis (PCA) reduces feature dimensionality and improves computational efficiency. The proposed 

Methods 
Testing 

Accuracy (%) 

SVM [16] 87.45 

CNN + RF [16] 99.73 

CNN [16] 99.66 

VAE + RF [3] 98.19 

VAE + Neural Network [3] 96.97 

XGBoost [3] 94 

Random Forest [3] 55.5 

Neural Network [3] 85 

1D-CNN-LSTM [17] 97.69 

Attention LSTM [17] 84.73 

Stacked LSTM deep network (Reduced 

features) [18] 
98.88 

CNN-LSTM Neural Network Without BN 89.55 

BN based LSTM Model (Proposed) 100 



 
MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

ISSN: 1053-7899  
Vol. 35  Issue 2,   2025, Pages: 1303-1311 

 

 
https://mswmanagementj.com/ 

1310 

method achieves 100% classification accuracy, demonstrating superior performance over conventional 

approaches. The high accuracy is attributed to LSTM’s ability to capture long-term temporal 

dependencies and the stabilizing effect of Batch Normalization. The combined EEMD–PCA 

preprocessing further enhances robustness, making the framework suitable for practical industrial 

condition monitoring.. 
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