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Abstract

Accurate diagnosis of bearing faults is critical for ensuring the reliability and safety of industrial electric
motors, particularly under complex operating conditions where traditional signal processing techniques
often exhibit limited robustness. To overcome these challenges, this study proposes an advanced deep
learning—based diagnostic framework that integrates signal decomposition, feature optimization, and
temporal modeling for intelligent bearing fault identification. Vibration signals acquired from rotating
machinery are first processed using Ensemble Empirical Mode Decomposition (EEMD) to effectively
suppress noise and isolate meaningful intrinsic mode functions. Relevant features are then selected
based on correlation coefficient analysis, and Principal Component Analysis (PCA) is applied to reduce
feature dimensionality while preserving essential fault-related information. The refined feature set is
subsequently fed into a Long Short-Term Memory (LSTM) network enhanced with Batch
Normalization to capture temporal dependencies and stabilize the training process. The inclusion of
Batch Normalization improves convergence behavior and enhances model generalization under varying
operating conditions. Experimental evaluation demonstrates that the proposed framework achieves
superior diagnostic performance, reaching 100% classification accuracy and outperforming
conventional fault diagnosis approaches. Owing to its robustness, low sensitivity to noise, and strong
temporal learning capability, the proposed method provides an effective and reliable solution for real-
time bearing fault diagnosis in industrial motor applications.
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1. Introduction

Machine fault diagnosis is a critical process in industrial maintenance that identifies and
classifies mechanical problems within equipment, including failures like gear damage, stator
malfunctions, and bearing faults. The goal of machine fault diagnosis is to ensure that machinery
remains operational and efficient, while reducing risks such as production stoppages, economic losses,
and potential threats to human safety. Over the past few decades, condition monitoring systems based
on expert systems and artificial intelligence (Al) have advanced significantly, providing more reliable
fault detection capabilities.
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The introduction of machine learning (ML) techniques has revolutionized the field of machine
fault diagnosis. Traditional methods often relied on manual feature extraction, but ML techniques can
automatically learn and extract relevant features from raw data, making fault detection more efficient
and accurate ™. Among the various ML models used in fault diagnosis, Support Vector Machines
(SVMs) and Artificial Neural Networks (ANNs) have shown remarkable success. These models
typically work by transforming vibration signals from the time domain into the frequency domain using
techniques such as Fast Fourier Transform (FFT). Once in the frequency domain, key features are
extracted and used to classify different types of faults 2. Research has demonstrated that incorporating
multiple hidden layers in neural networks significantly improves fault detection accuracy. For example,
fault classification accuracy rates in rotating machinery have been shown to increase from 88% to as
high as 95% when deep learning architectures are used Bl Principal Component Analysis (PCA) is
another powerful technique used to improve the performance of machine learning models. By reducing
the dimensionality of the feature space, PCA eliminates redundant data and makes the training process
more efficient. This is particularly beneficial in models like multiclass SVMs, where reducing the
feature space helps improve classification accuracy while reducing computational complexity. In
addition to SVMs and ANNSs, Random Forest (RF) algorithms have been applied for fault classification
in rotating machines . RF models use multiple decision trees to classify faults based on features
extracted from methods like EEMD and wavelet decomposition. The ensemble nature of RF provides
more robust and accurate fault classification compared to single decision tree models.

One of the most promising advancements in machine fault diagnosis is the development of
hybrid machine learning architectures. These architectures combine multiple models to improve the
accuracy and reliability of fault classification. A common approach is to use a two-stage architecture
where the first stage focuses on dimensionality reduction, and the second stage performs the actual
classification. For example, Recurrent Neural Network (RNN)-based variational autoencoders are often
used in the first stage to reduce the dimensionality of vibration signals [, In the second stage,
algorithms such as Random Forest, SVM, XGBoost, Long Short-Term Memory (LSTM) networks, and
Gated Recurrent Units (GRUS) are applied to classify the faults based on the reduced feature set. These
integrated architectures offer several advantages !, By using dimensionality reduction in the first
stage, the models become more efficient, requiring less computational power while still maintaining
high accuracy. The use of advanced classifiers like LSTMs and GRUSs in the second stage allows the
models to capture temporal dependencies in the vibration signals, further improving fault classification
accuracy.

The key contributions of this paper are as follows:

1. The raw vibration signal is initially analyzed in both the time and frequency domains to capture
fault-related characteristics. Ensemble Empirical Mode Decomposition (EEMD) is then applied to
decompose the signal into multiple intrinsic mode functions (IMFs), enabling effective suppression of
noise and non-stationary components. To retain only informative fault features, a correlation-
coefficient-based selection strategy is employed, where IMFs with stronger relevance to fault conditions
are preserved.

2. The selected IMFs form a high-dimensional feature set that may contain redundant information.
To address this issue, Principal Component Analysis (PCA) is applied to reduce the dimensionality of
the feature space while preserving the most significant fault-sensitive information. Batch Normalization
is incorporated during model training to stabilize feature distributions and accelerate convergence,
ensuring improved learning efficiency.

3. An LSTM-based deep learning model is subsequently developed using the optimized feature
set to capture temporal dependencies inherent in vibration signals. The diagnostic performance of the
proposed framework is evaluated and compared with existing machine learning approaches,
demonstrating improved accuracy and computational efficiency in rolling bearing fault classification.
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The paper is organized as follows: Section 1 presents an introduction to various fault diagnosis
approaches. Section 2 outlines the methodology for bearing fault classification. Section 3 analyses the
results and discussion. and Section 4 concludes the work.

3. Methodology

The bearing vibration signals used in this study were obtained from the data repository [15] and
collected from both the fan-end and drive-end locations under healthy and various faulty operating
conditions. The experiments were conducted at multiple rotational speeds, namely 1730 rpm, 1750 rpm,
1772 rpm, and 1797 rpm. These vibration signals exhibit significant noise contamination and quasi-
stationary behavior, which can adversely affect fault identification accuracy. Therefore, as illustrated
in Fig. 1, an Ensemble Empirical Mode Decomposition (EEMD)-based denoising strategy is employed
as the initial preprocessing step. The original vibration signals are decomposed into a finite number of
intrinsic mode functions (IMFs) along with a residual component. IMFs characterized by relatively low
non-stationarity and strong correlation with the original signal are selected as informative features.

The resulting feature set is inherently high-dimensional, motivating the use of Principal
Component Analysis (PCA) to eliminate redundant information and reduce computational complexity.
Initially, eight feature components are extracted from the selected IMFs; however, to mitigate
multicollinearity and improve diagnostic reliability, PCA is applied to project the feature space into a
lower dimension. The eight features are effectively reduced to two principal components while
preserving the majority of the signal’s discriminatory information. These compact representations are
subsequently provided as sequential inputs to the Batch Normalization—based LSTM model for accurate
classification of bearing health conditions. The corresponding rolling bearing fault categories are
summarized in Table 1.

Bearing Vibration Signal Decomposition IMF Feature Total Feature Classification of
Signals at different ] into IMFs for non- Selection using Space Extraction Motor Bearing
fault conditions and stationarity reduction Correlation using PCA Faults using BN

Speeds and noise removal Coefficient based LSTM

Neural Network

Fig. 1 Combinational framework for classification of bearing faults

Table 1 Rolling Bearing State

Bearing State (Approx Motor speed (rpm) = 1730,1750,1772,1797
No. Fault Diameter (inches) Fault Location
1 - Normal Condition (NC) (Class 0)
2 0.007 Inner Race Fault (IRF007) (Class 1)
3 0.021 Inner Race Fault (IRF021) (Class 2)
4 0.007 Outer race Fault (ORF007) (Class 3)
5 0.007 Outer Race Fault @ (6:00)*™ (ORF007@6) (Class 4)
6 0.014 Outer Race Fault @ (12:00)*™ (ORF014@12) (Class 5)

3.1 Data Pre-processing and Feature Preparation using EEMD

The raw vibration signals acquired from the fan-end (FE) and drive-end (DE) bearings under different
operating conditions and rotational speeds are first examined in both the time and frequency domains.
Frequency-domain analysis of vibration signals is widely adopted for bearing fault diagnosis, as it
enables the identification of defect-related frequency components. This is achieved by applying the
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Fast Fourier Transform (FFT) to time-domain signals, thereby revealing fault signatures in the
frequency—amplitude spectrum.

In this work, the original vibration signals are transformed into the frequency domain prior to further
processing. Ensemble Empirical Mode Decomposition (EEMD) is then applied to the FE and DE
bearing signals collected at four distinct rotational speeds under healthy and faulty conditions. Through
EEMD, each vibration signal is adaptively decomposed into a set of intrinsic mode functions (IMFs)
along with a residual component, effectively mitigating mode mixing and reducing noise interference.
High-frequency components are progressively separated across lower-order IMFs, with early IMFs
capturing dominant fault-related frequencies, albeit with some noise contamination, while higher-order
IMFs provide improved isolation of characteristic frequency components.

For subsequent analysis, eight vibration signals of length 15,000 samples are considered for each
bearing condition. Each signal is decomposed into 14 IMF components, resulting in a high-dimensional
feature representation suitable for noise suppression and non-stationary signal handling. Consequently,
the constructed IMF-based feature dataset has a dimensional structure of [6x14x8x15000], where 6
denotes the bearing health conditions, 14 represents the number of IMFs, 8 corresponds to the vibration
signals, and 15,000 indicates the sample length of each signal.

3.2 Feature Selection and Extraction

Any well-developed classification model relies heavily on being trained with relevant and
significant features. It is crucial to avoid the capture of insignificant patterns by the model due to noise,
which underscores the importance of appropriate feature selection. While EEMD offers benefits, it also
increases the number of input signals, posing a challenge. To address this, the correlation relationship
between all decomposed IMF signals and the actual raw signals is computed to select the best de-noised
and highly correlated IMFs with the original signal. The highest IMF coefficient values are selected as
the best features for fault classification. This process is repeated for all types of fault conditions at
different speeds. Ultimately, the application of EEMD and feature selection using correlation
coefficients yields a set of 8 IMF features, each with a sample length of 15,000 for six bearing conditions
[6*8*15000].

PCA was applied to the initial feature space of [6* 8*15000] to reduce dimensionality and
eliminate data redundancy. All selected IMFs were reduced to two principal components, as they
captured most of the variance in the data, resulting in a reduced data size of [6* 2*15000] for each
bearing condition. The reduced feature vectors for all six conditions were then used as input to train the
BN Based LSTM classifier mode

3.3 LSTM model

Relevant features are extracted from preprocessed data using the EEMD technique and the Correlation
Coefficient. These features are then fed into a neural network to identify the health state of roller
bearings. Figure 2 shows the architecture of the combined LSTM model, featuring both a feature
extractor and a classifier module. The reduced features fed into the LSTM layer, which captures
temporal dependencies in the data, thereby improving fault detection accuracy.
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Fig. 2 Combinational framework of proposed model

3.4 Combinational Framework of Bearing Condition

The fault diagnosis algorithm is divided into two sections. The first is to capture the dynamic
information from vibrational data and the second is to develop a deep learning classifier model for
classifying the various types of bearing faults under different conditions. The following steps has been
taken for rolling bearing fault diagnosis using the BN-based LSTM model. The details are as follows

1.

Sensor data are first collected from the bearing system under different operating and fault
conditions. The acquired signals are subsequently preprocessed and normalized to a fixed range
between 0 and 1 to ensure uniform scaling and numerical stability.

Ensemble Empirical Mode Decomposition (EEMD) is applied to the vibration signals to
perform adaptive time—frequency analysis, enabling effective handling of non-stationary
characteristics and noise components.

Relevant fault-sensitive features are selected using a correlation coefficient—based method,
retaining only those intrinsic mode functions (IMFs) that exhibit strong correlation with the
original vibration signals.

Principal Component Analysis (PCA) is employed to reduce the dimensionality of the selected
IMF feature set, preserving the most informative components associated with six different
bearing fault categories while eliminating redundant features.

The prepared dataset is partitioned into training, validation, and testing subsets to ensure
unbiased model development and performance assessment.

Batch Normalization is incorporated into the learning framework to stabilize feature
distributions, accelerate convergence, and enhance the generalization capability of the neural
network.

A Batch Normalization—enhanced Long Short-Term Memory (LSTM) neural network is trained
using the optimized feature set to learn temporal dependencies and classify bearing fault
conditions.

Model performance is evaluated using multiple metrics, including classification accuracy,
training and validation loss, confusion matrix analysis, receiver operating characteristic (ROC)
curves with area-under-the-curve (AUC) values, and additional performance indices.
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This framework includes an input layer, hidden layers, dense layers, a softmax layer, and an output
layer. The extracted data is fed into the neural network, with each LSTM layer comprising 50 neurons.
The LSTM model is trained with the following hyperparameters: Adam optimizer for its efficiency and
adaptive learning rate, mean squared error loss function, and a batch size of 50 for balanced memory
usage and convergence. A dropout rate of 0.2 is used to mitigate overfitting, while the model undergoes
50 epochs of training with a learning rate of 0.01. Softmax activation is employed for classification.
The LSTM network is developed and trained using Python with the Keras package and TensorFlow 1.0,
leveraging their robust features for effective model development and training.

4. Results and Discussion

This study develops a Batch Normalization—based stacked LSTM (BN-LSTM) network for multi-class
rolling bearing fault classification and systematically evaluates its performance. A confusion matrix is
used to compare predicted and true bearing conditions, where correct classifications lie along the
diagonal and misclassifications appear off-diagonal. As shown in Fig. 3, the BN-LSTM accurately
classifies bearing classes 0-5, enabling the computation of key performance metrics. Owing to its ability
to automatically learn temporal fault features, the model eliminates the need for manual feature
extraction, with quantitative results summarized in Table 2. Further validation using ROC analysis (Fig.
4) shows curves strongly biased toward the true positive rate, confirming the high sensitivity,
robustness, and reliability of the proposed BN-LSTM framework for multi-class bearing fault diagnosis.

Confusion Matrix
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Fig. 3 Confusion Matrix of Proposed BN based LSTM
The classification accuracy thus obtained using BN based LSTM model has been compared

with other machine learning and deep learning models used in the literature. Table 2 shows the
classification accuracy of the proposed model compared with other existing work cited in the literature.
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Table 2 Comparison of Classification Accuracy

Testing
Methods Accuracy (%)
SVM [16] 87.45
CNN + RF [16] 99.73
CNN [16] 99.66
VAE + RF [3] 98.19
VAE + Neural Network [3] 96.97
XGBoost [3] 94
Random Forest [3] 55.5
Neural Network [3] 85
1D-CNN-LSTM [17] 97.69
Attention LSTM [17] 84.73
Stacked LSTM deep network (Reduced 98.88
features) [18] '
CNN-LSTM Neural Network Without BN 89.55
BN based LSTM Model (Proposed) 100
10 =
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' - ROC curve of class 1 (area = 0.95)
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*,—" ROC curve of class 5 (area = 0.90)
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Fig. 4 ROC Curves of Classes Predicted by BN Based LSTM Model

The Area Under Curve of ROC for each Class 0, Class 1, Class 2, class 3, class 4 and class 5
deduced as 0.97, 0.95 0.87, 0.93, 0.83 and 0.90 respectively (Fig. 4) also validates the model’s ability
to correctly classify the condition that bearings belongs to. Above all, confirms the suitability of the
proposed BN based LSTM model for classification of bearing condition from the raw vibration data.

6. Conclusion

Rolling element bearings are critical components in rotating machinery and are prone to degradation
under harsh operating conditions. This work proposes an intelligent bearing fault classification
framework using a Batch Normalization—based Long Short-Term Memory (BN-LSTM) network.
Ensemble Empirical Mode Decomposition (EEMD) is employed to handle noise and non-stationary
vibration signals by extracting fault-relevant intrinsic mode functions, while Principal Component
Analysis (PCA) reduces feature dimensionality and improves computational efficiency. The proposed
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method achieves 100% classification accuracy, demonstrating superior performance over conventional
approaches. The high accuracy is attributed to LSTM’s ability to capture long-term temporal
dependencies and the stabilizing effect of Batch Normalization. The combined EEMD-PCA
preprocessing further enhances robustness, making the framework suitable for practical industrial
condition monitoring..
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