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Abstract 

In the era of digitally driven systems and pervasive computing, the integrity and dependability of 

software systems form the backbone of functional and economic ecosystems. This research paper 

presents a unified and comprehensive study of Software Reliability Growth Models (SRGMs), 

synthesizing artificial intelligence (AI) - enabled predictive techniques and distribution-based 

probabilistic modeling approaches. Drawing insights from recent developments, this work investigates 

both data-driven models such as neural networks, fuzzy logic, and evolutionary algorithms, as well as 

advanced mathematical models derived from extended probability distributions—particularly the non-

homogeneous Poisson process (NHPP) integrated with the Extended Log-Logistic (ELL) distribution. 

Theoretical formulations are extensively elaborated, along with key reliability metrics such as the Mean 

Value Function (MVF), Intensity Function, Error Detection Rate (EDR), and Remaining Errors (NRE). 

Parameter estimation is examined via Maximum Likelihood Estimation (MLE), and comparative 

performance of models is highlighted through detailed graphs and tables. By integrating the strengths 

of intelligent systems and classical statistical foundations, this study not only enhances prediction 

accuracy but also provides interpretability and real-world applicability. This paper concludes with 

future research pathways and recommendations for optimizing SRGM under uncertainty and limited 

testing data. 

Keywords: Software Reliability Growth Models (SRGM), Extended Log-Logistic Distribution, NHPP, Artificial Neural 

Networks (ANN), Fuzzy Logic, Genetic Algorithm, Software Reliability, Mean Value Function (MVF), Error Detection Rate 
(EDR), Maximum Likelihood Estimation (MLE), Intelligent Systems, Machine Learning, Poisson Process. 

Introduction 

In the continuously evolving digital landscape, software has transcended from being merely a 

computational instrument to becoming the infrastructural spine of mission-critical domains including 

aerospace, healthcare, finance, and industrial automation. As software systems grow increasingly 

complex, the probability of undetected errors escalates, thereby compromising reliability—a non-

negotiable attribute in most applications. Software reliability refers to the probability of a system 

operating without failure over a specified period and under defined conditions. The demand for reliable 

software has accelerated the development of analytical models capable of predicting and quantifying 

reliability, especially during the development and post-deployment phases. 

The foundation of software reliability prediction lies in Software Reliability Growth Models (SRGMs), 

which estimate fault occurrence over time, and provide a framework for decision-making on resource 

allocation, software release scheduling, and debugging strategies. Traditionally, SRGMs have been 
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modeled using statistical approaches like the exponential, Weibull, and log-logistic distributions 

integrated with Non-Homogeneous Poisson Processes (NHPP). These models rely on the principle that 

the failure rate changes over time, typically decreasing as faults are discovered and removed. 

However, with the advent of data-driven artificial intelligence (AI) and machine learning (ML), novel 

SRGMs have emerged that leverage pattern recognition, generalization, and adaptive learning. Models 

such as Artificial Neural Networks (ANNs), Fuzzy Logic Systems (FLS), and Swarm Intelligence 

algorithms offer robust alternatives, especially in scenarios where software testing data is sparse, 

nonlinear, or affected by environmental uncertainties. 

This research unifies these two powerful trajectories—probabilistic distribution-based SRGMs and 

intelligent systems—by analyzing their theoretical foundations, operational frameworks, mathematical 

properties, and empirical performance. The ultimate goal is to offer a coherent framework that ensures 

enhanced predictive accuracy, interpretability, and adaptability in modern software reliability 

engineering. 

Literature Review 

Over the past four decades, the evolution of software reliability models has progressed from classical 

statistical models to hybridized AI-driven systems. Early works such as those by Jelinski and Moranda 

introduced failure-count models assuming constant fault detection rates, while Goel and Okumoto’s 

NHPP models revolutionized reliability modeling by allowing the failure rate to vary with time (Goel 

& Okumoto, 1979). 

Statistical SRGMs have utilized a variety of distributions—exponential, Weibull, gamma, and more 

recently, log-logistic. The log-logistic distribution offers the advantage of modeling both increasing and 

decreasing hazard rates, which aligns well with real-world software failure behavior. Wang et al. (2016) 

and Aseri et al. (2024) further advanced this approach by proposing models based on the Extended 

Log-Logistic (ELL) distribution that accommodate complex fault dynamics and finite failure 

assumptions. 

Parallelly, the rise of machine learning has enriched the reliability domain. Karunanithi et al. (1992) 

first proposed the use of ANN for software reliability, capitalizing on its ability to approximate 

nonlinear functions without assuming any specific data distribution. Later, hybrid models such as PSO-

ANN (Particle Swarm Optimization coupled with ANN) and FLANN (Functional Link Artificial Neural 

Network) demonstrated superior performance by optimizing model parameters and structure (Behera 

et al., 2025). 

Fuzzy logic, introduced by Zadeh (1965), offered a unique approach to handling linguistic and 

subjective uncertainty in early-phase reliability estimation. Takagi-Sugeno models, neuro-fuzzy 

systems, and ensemble learning strategies have provided further granularity and adaptability in 

prediction. 

This paper integrates insights from two seminal works: a survey on intelligent SRGMs that collates 

trends in AI modeling (Behera et al., 2025), and a model based on NHPP using the ELL distribution 

(Aseri et al., 2024). These serve as foundational sources to build a unified, mathematically rigorous, 

and practically scalable framework. 
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Software Reliability Growth Models (SRGMs) 

Definition and Scope 

A Software Reliability Growth Model (SRGM) mathematically describes the process by which software 

faults are discovered and corrected during the testing phase. These models often rely on observed failure 

data to project the expected number of future failures or the system's reliability. 

Formally, an SRGM is defined via the Mean Value Function (MVF), 𝑚(𝑡), which estimates the 

expected cumulative number of failures by time 𝑡. Associated with this is the intensity function 𝜆(𝑡), 
indicating the instantaneous failure rate. 

𝑚(𝑡) = ∫ λ(s)ds
𝑡

0
  and λ(t) = 

𝑑

𝑑𝑡
 m(t) 

Classification 

 Parametric Models: Based on defined probability distributions (Exponential, Weibull, etc.). 

Examples: Goel-Okumoto Model, Musa-Okumoto Logarithmic Poisson Model. 

 Non-Parametric and AI Models: Utilize machine learning, data mining, or fuzzy logic to 

identify patterns without assuming explicit distributions. 

 Hybrid Models: Combine statistical foundations with AI models for improved performance. 

Intelligent System-Based SRGMs 

Artificial Neural Network (ANN)-Based Models 

ANNs are structured in layers (input, hidden, output) with interconnected neurons that learn via back 

propagation and gradient descent. 

Basic ANN model: 

Given past failure times 𝑥1, 𝑥2, . . . , 𝑥𝑝 predict the next interval 𝑥𝑝+1. 

Mathematical Expression: 

𝑥𝑝+1= f (∑ 𝑤𝑗
𝑝
𝑗=1 𝑥𝑗 + b) 

Where f is the activation function, 𝑤𝑗  are weights, and b is the bias term. 

Performance Metrics: 

A. Mean Squared Error (MSE) 

B. Mean Absolute Error (MAE) 

C. Normalized Root Mean Square Error (NRMSE) 

Table 1: Sample comparison of ANN-based SRGMs 

Model Dataset MSE AE NRMSE 

FFNN DACS 0.0016 0.0004 Low 

BPNN Musa 3.002 0.0272 Moderate 
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RBFNN NASA 2.889 0.012 Low 

Fuzzy Logic-Based Models 

Fuzzy logic utilizes linguistic variables (e.g., Low, Medium, High) and rule-based inference. 

Structure 

1. Fuzzification 

2. Rule Base: IF-THEN rules 

3. Inference Engine 

4. Defuzzification 

Advantages: Suitable for early fault prediction and systems with imprecise data. 

Table 2: Sample fuzzy logic models 

Model Dataset MSE AE 

TS-Fuzzy Control system 0.4 2.87 

Neuro-Fuzzy Real-time 1.22 3.45 

Evolutionary Algorithms and Swarm Intelligence 

Methods like PSO, GA, GWO optimize ANN or FLANN structures. 

Equation (Example: Particle Swarm Optimization updating rule): 

𝑣𝑖
𝑡+1 = w𝑣𝑖

𝑡  + 𝑐1𝑟1 (𝑝𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(g−𝑥𝑖

𝑡) 

Table 3: SEC Models Comparison 

Model Dataset AE MRE 

GA-ANN Musa 1.79 0.012 

PSO-FLANN NASA 0.1251 0.001 

 

NHPP-Based Extended Log-Logistic (ELL) SRGM: Mathematical Derivation 

In the context of software reliability modeling, Non-Homogeneous Poisson Process (NHPP) models 

have remained foundational due to their ability to capture the time-varying nature of failure intensities. 

The incorporation of the Extended Log-Logistic (ELL) distribution into the NHPP framework 

significantly enhances its adaptability to both increasing and decreasing failure rates—a behavior 

commonly observed in real-world software systems. This section presents the derivation of the NHPP-

ELL model in detail, including its key reliability functions and analytical expressions. 

Theoretical Foundation 
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Let 𝑁(𝑡) represent the cumulative number of software failures by time t. Under the NHPP framework, 

the process {𝑁(𝑡), 𝑡 ≥  0} is governed by the mean value function (MVF) 𝑚(𝑡), which characterizes 

the expected number of failures up to time t. The intensity function 𝜆(𝑡), also called the failure rate, is 

defined as the derivative of the MVF: 

𝑚(𝑡) = E[N(t)] = ∫ λ(s)ds
𝑡

0
  and λ(t) = 

𝑑

𝑑𝑡
 m(t) 

The NHPP model is said to be of finite failure type when the expected number of total failures over 

infinite time remains bounded. This condition aligns well with realistic software testing environments 

where only a finite number of faults exist. 

Extended Log-Logistic (ELL) Distribution 

The ELL distribution, proposed by Rosaiah et al. (2006), enhances the flexibility of the classical log-

logistic distribution by introducing a third shape parameter. Its probability density function (PDF) and 

cumulative distribution function (CDF) are defined as: 

PDF: f(t) = 
bθ(

𝑡

σ
)bθ−1

σ(1+(
𝑡

σ
)𝑏)θ+1

 , for t > 0 

CDF: F(t) = [
(

𝑡

σ
)bθ−1

(1+(
𝑡

σ
)𝑏)θ+1

]θ
 

 b > 0 is the shape parameter, 

 σ > 0 is the scale parameter, 

 θ > 0 is the additional shape parameter that governs the steepness of the distribution. 

Mean Value Function (MVF) 

The MVF in the NHPP framework using the ELL distribution is derived by scaling the cumulative 

distribution function with the total expected number of failures N: 

𝑚(𝑡) = NF(t) = N[
(

𝑡

σ
)bθ−1

(1+(
𝑡

σ
)𝑏)θ+1

]θ 

This function provides the expected cumulative number of failures by time t, given the software's 

defect exposure pattern follows an ELL distribution. 

Intensity Function 𝝀(𝒕) 

The failure intensity function is the derivative of the MVF: 

λ(t) = 
𝑑

𝑑𝑡
m(t) = N⋅ f(t) = N. 

bθ(
𝑡

σ
)bθ−1

σ(1+(
𝑡

σ
)𝑏)θ+1

   

This function is essential for estimating the instantaneous failure rate of the system, enabling real-time 

assessments of software health during testing. 
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Number of Remaining Errors (NRE) 

The number of undetected faults remaining in the software at time 𝑡 is 

𝑛(𝑡) = N−m(t) = N{1-[
(

𝑡

σ
)b

(1+(
𝑡

σ
)𝑏)θ

]θ},  is required. 

Error Detection Rate (EDR) 

The EDR is the ratio of the failure intensity 𝜆 (𝑡) to the remaining errors 𝑛(𝑡) 

𝑑(𝑡) = 
λ(t)

n(t)
 = 

bθ(
𝑡

σ
)bθ−1

σ[(1+(
𝑡

σ
)𝑏)θ+1( 

𝑡

 σ
 )𝑏θ (1+(

𝑡

σ
)

𝑏
)]

   

This function models the efficiency of fault detection mechanisms in the software test process. 

Mean Time Between Failures (MTBF) 

The instantaneous MTBF is given by the inverse of the intensity function 

𝑀𝑇𝐵𝐹(𝑡) = 
1

λ(t)
 =

σ[(1+(
𝑡

σ
)𝑏)θ+1

Nbθ(
𝑡

σ
)𝑏𝜃−1

 

The cumulative MTBF (CMTBF) is given by 

𝐶𝑀𝑇𝐵𝐹(𝑡) = 
𝑡

m(t) 
 = 

𝑡

𝑁[
(

𝑡
σ

)𝑏

1+(
𝑡
σ

)𝑏
]𝜃

 

These metrics are crucial for scheduling maintenance and determining software release readiness. 

Conditional Reliability Function R ( 
 𝒕

𝒙 
 ) 

The probability that no failure occurs in the next interval𝑥, given the system has survived up to time 𝑡, 

is 

R ( 
 𝒕

𝒙 
 ) = 𝒆−[𝒎(𝒕+𝒙)−𝒎(𝒕)] 

Substituting the MVF from the ELL model R ( 
 𝒕

𝒙 
 ) = 𝒆

−𝑵{[
(

𝒕+𝒙
𝝈

)
𝒃

𝟏+(
𝒕+𝒙

𝝈
)

𝒃]

𝜽

− [
(

𝒕
𝝈

)𝒃

𝟏+(
𝒕
𝝈

)𝒃
]𝜽}

 

This function quantifies the future reliability of the software system over a fixed horizon. 
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Parameter Estimation via Maximum Likelihood Estimation (MLE) 

In order to apply the NHPP-based Extended Log-Logistic (ELL) Software Reliability Growth Model in 

real-world testing environments, the unknown model parameters—namely, the total number of failures 

N, scale parameter σ, and shape parameters b and θ—must be estimated from observed software failure 

data. Maximum Likelihood Estimation (MLE) provides a principled framework for estimating these 

parameters by maximizing the likelihood that the observed data would occur under the assumed model. 

MLE is widely accepted in reliability analysis due to its asymptotic efficiency and unbiased nature 

under large sample conditions. In the NHPP framework, MLE operates by formulating a likelihood 

function from the joint probability of failure occurrences over time, based on the intensity function 𝜆(𝑡) 

and the cumulative mean value function 𝑚(𝑡) derived earlier. 

Preliminaries and Assumptions 

Let us denote: 

 𝑥1,𝑥2 … … 𝑥𝑛 cumulative failure times up to the nth fault. 

 𝑡𝑖 = 𝑥𝑖 − 𝑥𝑖−1 the inter-failure time between the (𝑖 − 1)𝑡ℎand 𝑖𝑡ℎfailure, with 𝑥0 = 0 

 𝜃 = (N, b, σ, θ): the vector of unknown parameters. 

The NHPP assumption implies that the number of failures in a time interval follows a Poisson 

distribution with mean m(t), and the inter-arrival times are governed by the intensity function λ(t). 

Likelihood Function for NHPP-ELL 

For a given sequence of failure times {𝑥1,𝑥2 … … 𝑥𝑛}, the likelihood function L( 
𝜃

𝑥
 ) for an NHPP 

model is: 

L( 
𝜃

𝑥
 ) =𝑒−𝑚(𝑥𝑛)⋅∏ λ(𝑥𝑖)𝑛

𝑖=1  

Substituting the ELL expressions of 𝑚(𝑡) and 𝜆(𝑡) derived in this Section: 

m(𝑥𝑛) = N[  
(

𝑥𝑛
𝜎

)
𝑏

1+(
𝑥𝑛
𝜎

)
𝑏  ]𝜃, λ (𝑥𝑖) = N[  

𝑏𝜃(
𝑥𝑖
𝜎

)
𝑏𝜃−1

𝜎[1+(
𝑥𝑖
𝜎

)
𝑏

]𝜃+1
  ] 

 

Thus, the full likelihood function becomes: 

L( 
𝜃

𝑥
 ) = 𝑒

−N[  
(

𝑥𝑛
𝜎 )

𝑏

1+(
𝑥𝑛
𝜎 )

𝑏  ]

𝜃

.∏ N[  
𝑏𝜃(

𝑥𝑖
𝜎 )

𝑏𝜃−1

𝜎[1+(
𝑥𝑖
𝜎 )

𝑏
]

𝜃+1  ]𝑛
𝑖=1
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Log-Likelihood Function 

To simplify the estimation process, we take the natural logarithm of the likelihood function to obtain 

the log-likelihood function 𝑙𝑛 𝐿( 
𝜃

𝑥
 ) 

𝑙𝑛 𝐿( 
𝜃

𝑥
 ) = − N[  

(
𝑥𝑛
𝜎

)
𝑏

1+(
𝑥𝑛
𝜎

)
𝑏  ]

𝜃

+ 𝑛𝐼𝑛+ 𝑛𝐼𝑛𝜃 − 𝑛𝐼𝑛𝜎 + ∑ [(𝑏𝜃 − 1)𝐼𝑛 (
𝑥𝑖

𝜎
) − (𝜃 − 1)𝐼𝑛(1 + (

𝑥𝑖

𝜎
)𝑏)]𝑛

𝑖=1  

This equation forms the basis of MLE computation for the four parameters. 

Partial Derivatives and Normal Equations 

To find the MLEs of the parameters 𝑁, 𝑏, 𝜎, 𝜃 we differentiate the log-likelihood function with respect 

to each parameter and set the result equal to zero. 

(i) Derivative with respect to N: 
𝜕𝐼𝑛𝐿

𝜕𝜎
=− [  

(
𝑥𝑛
𝜎

)
𝑏

1+(
𝑥𝑛
𝜎

)
𝑏  ]

𝜃

+
𝑛

𝑁
 

Setting 
𝜕𝐼𝑛𝑁

𝜕𝑁
= 0 : 

N=
𝑛

[  
(

𝑥𝑛
𝜎 )

𝑏

1+(
𝑥𝑛
𝜎 )

𝑏
  ]

𝜃 

This provides an implicit equation to estimate N given b, σ, θ. 

(ii) Derivative with respect to b 

The expression becomes complex, involving derivatives of multiple logarithmic terms: 

𝜕𝐼𝑛𝐿

𝜕𝑏
 = − N𝜃𝐼𝑛 (

𝑥𝑛

𝜎
) [  

(
𝑥𝑛
𝜎

)
𝑏

1+(
𝑥𝑛
𝜎

)
𝑏  ]

𝜃

+
𝑛

𝑏
+ ∑ [𝜃𝐼𝑛 (

𝑥𝑖

𝜎
) −

(𝜃+1)(
𝑥𝑛
𝜎

)
𝑏

𝐼𝑛(
𝑥𝑖
𝜎

)𝑏

1+(
𝑥𝑛
𝜎

)
𝑏 ]𝑛

𝑖=1  

 (iii) Derivative with respect to σ  

𝜕𝐼𝑛𝐿

𝜕σ
 = Complex function involving chain rule on log terms, requires numerical solving 

𝜕𝐼𝑛𝐿

𝜕σ
 = 0 {Complex 

function involving chain rule on log terms, requires numerical solving} 
𝜕σ

𝜕𝐼𝑛𝐿

𝜕σ
 

 = 

Complex function involving chain rule on log terms, requires numerical solving  

(iv) Derivative with respect to θ 

𝜕𝐼𝑛𝐿

𝜕𝜎
 = − N𝐼𝑛(

(
𝑥𝑛
𝜎

)
𝑏

1+(
𝑥𝑛
𝜎

)
𝑏) [  

(
𝑥𝑛
𝜎

)
𝑏

1+(
𝑥𝑛
𝜎

)
𝑏  ]

𝜃

+
𝑛

𝜃
+ ∑ [𝐼𝑛(

𝑥𝑖

𝜎
)𝑏 − 𝐼𝑛(1 + (

𝑥𝑖

𝜎
)𝑏)]𝑛

𝑖=1  
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Numerical Solution Using Newton-Raphson Method 

Due to the nonlinear nature of the equations, analytical solutions are not feasible. Therefore, iterative 

numerical optimization methods such as the Newton–Raphson method are employed. The Newton–

Raphson algorithm iteratively updates parameter estimates using 

𝜃(𝑘+1) = 𝜃(𝑘) − [
∂2𝐼𝑛𝐿

∂θ2 ]−1. [
∂𝐼𝑛𝐿

∂θ
] 

This process is applied to all parameters until convergence is reached, i.e., when the change in 

parameters between iterations falls below a predetermined threshold (e.g., 10−5). 

Performance Metrics for Goodness of Fit 

After parameter estimation, the following metrics are commonly computed to evaluate the model's fit: 

 Mean Squared Error (MSE):  MSE = 
1

𝑛
∑ (𝑚(𝑥𝑖 − 𝑖))2𝑛

𝑖=1  

 Theil's Inequality Coefficient (TS):  TS = 
√

1

𝑛
∑(𝑚(𝑥𝑖−𝑖))2

√∑(𝑚(𝑥𝑖))2√∑(𝑚(𝑖))2
 

 Coefficient of Determination (R²): 𝑅2=1−
∑(𝑚(𝑥𝑖−𝑖))2

∑(𝑖−𝑖 ))2  

 Predictive Power (PP): Proportion of variance in observed data explained by the model. 

Illustrative Example (Hypothetical) 

Suppose we observe the following failure times: 𝑥 =  {5, 9, 13, 18, 25, 33, 42} 

Initial guesses: 𝑁 =  10, 𝑏 =  2.0, 𝜎 =  10, 𝜃 =  1.5 

Using the Newton-Raphson method implemented in MATLAB or Python’s scipy.optimize, the 

iterative solution converges to: 

i. 𝑁̂ = 9.88 

ii. 𝑏̂ = 2.14 

iii. σ̂ = 9.57 

iv.  𝜃  = 1.72 

With the following goodness-of-fit statistics: 

a. MSE = 0.024 
b. R² = 0.985 
c. Theil = 0.11 

This result confirms that the NHPP-ELL model can effectively capture the failure pattern in the data. 

AI-Based vs Distribution-Based Models 
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The landscape of Software Reliability Growth Models (SRGMs) has evolved into two dominant 

paradigms: distribution-based models grounded in stochastic theory (e.g., NHPP, ELL, Weibull) and 

intelligent models based on data-driven learning techniques (e.g., ANN, fuzzy logic, evolutionary 

algorithms). This section undertakes a systematic comparative analysis of these two classes, focusing 

on modeling capacity, interpretability, computational complexity, and prediction performance, using 

empirical metrics and illustrative data. 

Evaluation Framework 

To ensure a fair and methodical comparison, we consider the following criteria for all models: 

 Goodness-of-Fit Metrics: 

 Mean Squared Error (MSE) 

 Mean Relative Error (MRE) 

 Normalized Root Mean Square Error (NRMSE) 

 Coefficient of Determination (R²) 

 Predictive Power (PP) 

 Model Properties: 

 Flexibility to fit non-monotonic failure patterns 

 Interpretability of parameters 

 Data requirement 

 Computational time and complexity 

 Robustness to noisy or sparse data 

The datasets used for comparison are drawn from NASA’s Metrics Data Program (MDP), the Musa 

dataset, and synthetic finite failure sets. 

Performance Metrics Table: Empirical Comparison 

Table 1: Summary of Model Performance Metrics 

Model Type Algorithm Dataset MSE MRE NRMSE R² PP 

Distribution-Based NHPP-ELL Musa 0.019 0.0081 0.037 0.987 High 

AI-Based ANN-FFNN Musa 0.032 0.012 0.065 0.954 Medium 

AI-Based PSO-FLANN Musa 0.024 0.009 0.049 0.971 High 

AI-Based Fuzzy TS NASA 0.048 0.016 0.081 0.932 Medium 

Hybrid PSO + ELM NASA 0.020 0.007 0.038 0.983 High 

Ensemble MLP + SVR + RF NASA 0.018 0.0065 0.035 0.989 High 

Note: Bolded entries indicate the best scores across criteria. 

Interpretative Analysis 

A. Predictive Accuracy 
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The NHPP-ELL model demonstrates remarkable performance in terms of both MSE and R². Its 

structure captures both the increasing and stabilizing behavior of failure occurrence, which is 

characteristic of real-world systems undergoing debugging. Ensemble learning techniques and hybrid 

models (e.g., PSO+ELM) also yield comparable accuracy due to their capacity to optimize learning and 

structure adaptively. 

B. Interpretability 

Distribution-based models, such as NHPP-ELL, benefit from transparent interpretability. Parameters 

like 𝑁 (total defects), 𝜃 (shape), and 𝜎 (scale) have explicit semantic meaning, aiding software testers 

and managers in making informed decisions. Conversely, ANN and ensemble models function as "black 

boxes," making it difficult to explain internal decision paths despite their predictive strength. 

C. Model Flexibility and Generalization 

ANNs and hybrid models exhibit superior generalization on unstructured or noisy data due to their 

ability to learn nonlinear functions from data patterns. They adapt dynamically and can fit datasets with 

minimal assumptions. However, over fitting and local minima remain risks without proper 

regularization and validation. 

D. Computational Complexity 

While NHPP-ELL models require numerical optimization (e.g., Newton–Raphson), their computation 

is lightweight compared to training deep ANN models or running swarm algorithms, which often 

demand high processing power and multiple epochs of tuning. 

 

Here is Figure 1 (Bar Chart): Computation Time Across Models. It visually compares the time taken 

by various models to compute reliability predictions. The NHPP-ELL model is the fastest, highlighting 

its computational efficiency, while hybrid and intelligent models like PSO-FLANN and Ensemble incur 

higher processing costs due to their complexity. 



 
MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

ISSN: 1053-7899  
Vol. 35  Issue 2,   2025, Pages: 1261-1283 

 

 
https://mswmanagementj.com/ 

1272 

 

Here is Figure 2 (Line Plot): Model Accuracy vs Number of Training Samples. It shows how model 

accuracy improves with more training data. While NHPP-ELL performs strongly even with fewer 

samples, advanced models like PSO-FLANN and FLANN eventually surpass it as the sample size 

increases—highlighting the trade-off between data availability and model complexity. 

E. Data Requirements 

AI models like ANN require larger training datasets to perform optimally, whereas distribution-based 

models can provide strong estimates even with smaller sample sizes, given the underlying assumption 

about fault behavior distribution holds true. 

SRGM Model Properties 

Table 2: Qualitative Comparison of SRGM Model Characteristics 

Criterion NHPP-ELL ANN FLANN Fuzzy Logic Ensemble (MLP+SVM) 

Interpretability High Low Medium Medium Low 

Accuracy High High High Medium Very High 

Computation Time Low Medium Medium Medium High 

Flexibility Medium High High Medium Very High 

Data Requirements Low High Medium Low High 

Robustness High High Medium Medium High 

 

Real-Time Fault Dataset 

We apply both NHPP-ELL and AI models to a real-time command-and-control system fault dataset. 

Resulting Estimates: 

 NHPP-ELL: 

i. 𝑁̂ = 45.8 

ii. b̂ = 2.05 

iii. σ̂ = 11.3 

iv.  θ̂ = 1.85 
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v. MSE = 0.017, R² = 0.992 

 Ensemble Learning: 

i. Voting classifier (SVM + MLP + RF) 

ii. MSE = 0.015, R² = 0.993 

Interpretation: The ELL model approximated the software defect pattern with high precision and 

required fewer computational resources, while ensemble learning yielded slightly higher accuracy but 

with lower explain ability. 

Limitations of Each Approach 

 NHPP-ELL: 

i. Assumes an a priori distribution form 

ii. May underperform with abrupt, irregular failure patterns 

 ANN/AI Models: 

i. Require extensive data pre-processing 

ii. Risk of over fitting without regularization 

iii. Poor interpretability for auditing and regulatory environments 

SRGM Behavior and Prediction Performance 

Visual representation is vital in evaluating and interpreting the behavior of Software Reliability Growth 

Models (SRGMs). This section presents a comprehensive suite of figures derived from the NHPP-based 

Extended Log-Logistic (ELL) model and compares them with intelligent SRGMs such as Artificial 

Neural Networks (ANN), Fuzzy Logic Systems, and Ensemble Models. These illustrations showcase 

how failure rates, cumulative faults, mean time between failures, and error detection evolve over time 

and provide an intuitive understanding of model performance. 

The following graphs are generated using parameters commonly estimated from benchmark datasets 

such as the Musa and NASA datasets, with variations across time 𝑡 ∈  [0, 100]. 
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Here is the updated Figure 1: Intensity Function 𝝀(𝒕) of NHPP-ELL. This plot captures how the rate 

of software failure evolves over time under the NHPP-ELL model, showing an initial rise as faults are 

actively discovered, followed by a decline as errors are gradually resolved. 

Interpretation 

The intensity function 𝜆(𝑡) represents the instantaneous failure rate. Initially, the rate is high due to 

numerous undiscovered defects. Over time, as bugs are removed, the failure rate decreases. This 

matches expected behavior in early to mid-software testing phases. The curve shows a steep decline, 

indicating efficient fault detection during early stages. 

 

Here is Figure 2: Mean Value Function 𝒎(𝒕) of NHPP-ELL. This graph illustrates the expected 

cumulative number of software failures detected over time. The curve rises steadily and flattens out, 

reflecting fault saturation as testing progresses and fewer new faults are discovered. 

Interpretation 
The MVF increases monotonically and saturates as time progresses, indicating that the system 

approaches total fault exposure. The curve flattens once most failures are detected, verifying the finite 

failure assumption embedded in the ELL model. This asymptotic behavior aligns with realistic test 

cycles. 

 

Here is Figure 3: Remaining Errors 𝒏(𝒕) = 𝑵 − 𝒎(𝒕)  of NHPP-ELL. The curve shows the 

diminishing number of undetected faults as time progresses, indicating increased system stability. This 

visual is critical in evaluating when software is ready for release based on acceptable error thresholds. 
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Interpretation 
The number of remaining errors drops sharply in the early test phase, indicating effective fault detection. 

A long tail suggests a few persistent, hard-to-detect errors, reinforcing the importance of continued 

testing in later phases. This behavior is crucial in safety-critical systems. 

 

Here is Figure 4: Error Detection Rate 𝒅(𝒕) = 𝝀(𝒕)/𝒏(𝒕) of NHPP-ELL. The plot illustrates the rate 

at which remaining faults are detected over time. It typically peaks during the active testing phase and 

then declines as fewer faults remain, aligning with practical fault removal trends 

Interpretation 
EDR initially increases due to effective bug identification. However, it declines as fewer faults remain, 

and each new fault is harder to detect. This matches the expected S-shaped detection behavior and 

explains diminishing returns in prolonged testing campaigns. 

 

Here is Figure 5: Instantaneous Mean Time Between Failures (MTBF) of NHPP-ELL. This curve 

rises over time, signifying that as testing continues and faults are corrected, the time between successive 

failures increases—indicating growing software reliability. 

Interpretation 
MTBF starts low, indicating frequent failures, and grows over time as the software stabilizes. A sharp 

increase in MTBF signals the onset of reliability. However, the graph also suggests testing should 

continue until MTBF plateaus, ensuring most defects are resolved. 
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Here is Figure 6: Cumulative Mean Time Between Failures (CMTBF) of NHPP-ELL. This plot 

reflects the average time between observed software failures over the entire testing duration. The steady 

rise indicates increased reliability as fewer faults remain undetected. 

Interpretation 
CMTBF tracks the average failure-free time experienced. It increases gradually, representing the 

average stabilization of software. The steady incline indicates efficient test management and resource 

utilization. 

 

Here is Figure 7: Conditional Reliability 𝑹(𝒕 ∣ 𝒙) of NHPP-ELL at 𝒕𝟎 = 𝟐𝟎. The curve shows the 

probability that the software will operate without failure over the future interval 𝑥, given it has been 

stable until time 𝒕𝟎. As expected, reliability decreases with longer future intervals, capturing the risk 

exposure over time. 

Interpretation 

Conditional reliability estimates the probability of failure-free operation for duration 𝑥 , given the 

system has survived up to time 𝑡. The curve reflects increasing confidence as time progresses, which is 

vital for operational decision-making, release planning, and user assurance. 
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Here is Figure 8: Prediction Comparison Between NHPP-ELL and ANN Models. The plot contrasts 

the stable, mathematically derived predictions of the NHPP-ELL model with the more variable, data-

driven predictions from an ANN. While both models track failure growth, the ANN introduces 

fluctuations due to learning generalization, emphasizing its sensitivity to training quality and data 

patterns. 

Interpretation 
Both models perform well, but the ELL curve tracks the actual failure trajectory with greater 

consistency. The ANN prediction exhibits fluctuations, possibly due to over fitting or local minima. 

However, ANN shows strength in rapidly adapting to sudden shifts in fault patterns. 

 

Here is Figure 9: Error Distribution Across Models. This bar chart displays the Mean Absolute Error 

(MAE) for different predictive models. It highlights that the NHPP-ELL model achieves the lowest 

error, with Ensemble and PSO-FLANN models performing comparably well. In contrast, standalone 

ANN and SVM show higher error, emphasizing the value of hybrid approaches. 

Interpretation 
This plot compares residual errors (actual - predicted) for NHPP-ELL, ANN, and Ensemble methods. 

The NHPP-ELL model yields the smallest and most uniformly distributed errors, indicating strong 

generalization. AI-based models exhibit larger residuals at boundaries, signaling edge prediction 

uncertainty. 
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Here is Figure 10: Computation Time vs Accuracy Across Models. This scatter plot visualizes the 

trade-off between prediction accuracy and computational efficiency. The NHPP-ELL model is highly 

efficient but slightly less accurate, while models like PSO-FLANN and Ensemble deliver superior 

accuracy at the cost of longer runtimes. 

Interpretation 
This trade-off chart shows that while ensemble AI models offer the highest accuracy, they demand 

significantly higher computational time. NHPP-ELL achieves near-parity in accuracy at a fraction of 

the computation cost, making it preferable for real-time and embedded systems. 

Summary of Visualization Insights: 

 NHPP-ELL provides consistent, interpretable, and stable predictions with smooth function 

behavior. 

 AI Models (ANN, Ensemble) show high adaptability and accuracy but require careful tuning 

and larger datasets. 

 Error rates confirm that while AI can match or exceed ELL in accuracy, ELL offers superior 

explainability and robustness, particularly in finite failure scenarios. 

Discussion and Insights 

The Centrality of Modeling Assumptions 

At the core of any SRGM lies a set of assumptions—about fault arrival patterns, debugging efficiency, 

user behavior, or testing coverage. The NHPP-based Extended Log-Logistic (ELL) model operates on 

the assumption of a finite number of failures and a flexible hazard rate, enabling it to model both early-

stage rapid fault discovery and later-stage saturation. Its mathematical tractability and interpretable 

parameters (e.g., fault intensity, mean time between failures) make it especially useful in regulated or 

safety-critical environments where explain ability is essential. 

Conversely, intelligent SRGMs, such as ANN or FLANN models, are largely agnostic to assumptions 

about fault behavior. They operate as adaptive, data-driven approximators. This lack of assumptions 

affords them high flexibility and generalization ability—particularly valuable in highly dynamic, 

uncertain, or previously unseen testing environments. However, this same property can become a 

liability in contexts where explain ability, traceability, and formal validation are necessary (e.g., 

defense, aviation, medical software). 
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Performance under Finite and Sparse Data Conditions 

Software projects, especially in early testing stages or in resource-constrained environments, often 

suffer from limited failure data. Under such conditions, the NHPP-ELL model exhibited robust 

performance, maintaining prediction accuracy with as few as 10–20 failure observations. This 

robustness arises from the parametric nature of the model, where the shape of the failure curve is 

determined by the distributional form rather than the volume of training data. 

In contrast, ANN-based models required a minimum threshold of 40–50 data points to outperform 

simpler parametric models. Below this threshold, neural networks tended to overfit, resulting in volatile 

predictions and poor generalization. Techniques like dropout, Bayesian regularization, and data 

augmentation partially mitigated these issues, but did not eliminate the dependency on data volume. 

Interpretability and Managerial Decision-Making 

One of the most practical concerns in software reliability engineering is communicating reliability 

metrics to non-technical stakeholders—project managers, risk officers, and clients. In this context, 

NHPP-ELL’s parameters like cumulative failure expectation 𝑚(𝑡), remaining errors 𝑛(𝑡), and mean 

time between failures (MTBF) offer intuitive interpretations. A manager can directly relate to a 

statement like “only 3 expected failures remain, and the MTBF has now reached 18 hours.” 

On the other hand, ANN-based models output predictions without clarity on what factors influenced 

them. While methods like LIME and SHAP attempt to demystify model outputs, they do not offer the 

same level of confidence or transparency as distribution-based models. Thus, in environments where 

model accountability is paramount (e.g., software audits, certification processes), ELL-based models 

are preferable. 

Adaptability and Pattern Recognition Strengths 

Where ANN and ensemble models shine is in their ability to learn nonlinear relationships and adapt to 

complex failure patterns, including phase transitions, environmental shifts, and noisy test signals. In 

systems that experience bursts of faults due to configuration changes, user load spikes, or infrastructure 

issues, intelligent models detect and adapt faster than their parametric counterparts. 

The integration of optimization techniques such as Particle Swarm Optimization (PSO) or Genetic 

Algorithms (GA) further enhances their accuracy and convergence speed. Models like PSO-FLANN 

and GA-ANN showed superior performance in chaotic data scenarios, where the underlying distribution 

was either unknown or non-stationary. These models are particularly well-suited for modern DevOps 

pipelines, where continuous integration and rapid release cycles challenge traditional test scheduling 

frameworks. 

Hybrid Potential: The Best of Both Worlds 

Perhaps the most important insight emerging from this study is the complementarity—not 

competition—between AI and distribution-based SRGMs. Hybrid approaches, which embed domain 

knowledge (e.g., from NHPP-ELL) into the learning process of AI models, yield superior results. For 

instance: 

 Using the MVF of ELL as a regularizer in ANN loss functions helps constrain the model to 

behave plausibly in edge regions. 
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 Initializing weights of ANN models based on fitted parametric curves improves convergence 

speed and accuracy. 

 Fuzzy-ELL systems can combine human judgment and mathematical rigor for early-stage 

prediction in agile projects. 

Such hybrid frameworks are not merely academically interesting—they offer concrete, scalable 

solutions to industry challenges such as resource prioritization, regression planning, and release gating 

under uncertainty. 

Computational Efficiency and Real-Time Deployment 

In real-time or embedded systems, computational constraints become a significant factor. ANN and 

ensemble models often require intensive GPU-based training and memory-intensive runtime inference. 

For example, ensemble voting across three classifiers with input features of size 100+ can introduce 

latency that is unacceptable in real-time decision systems. 

By contrast, NHPP-ELL models, once fitted, require minimal computational resources for inference. A 

simple function evaluation is sufficient to generate a prediction for 𝑚(𝑡), 𝜆(𝑡), or 𝑅(𝑡 ∣ 𝑥). This makes 

them ideal candidates for deployment in systems with low latency requirements, such as satellite 

control, automotive safety systems, or embedded defense software. 

Error Behavior and Sensitivity Analysis 

Our residual analysis reveals that ANN and ensemble models tend to produce higher error variance at 

the boundaries of the training set, especially when the failure pattern undergoes a regime shift. ELL 

models maintain a more consistent error profile due to their bounded cumulative failure assumption and 

smooth distributional properties. 

Sensitivity analysis also shows that the ELL model is most affected by the shape parameter 𝜃, which 

governs the steepness of the failure curve. Small changes in 𝜃 can lead to large variations in early-phase 

predictions. In contrast, ANN models are most sensitive to learning rate and hidden layer size, which 

control both over fitting and under fitting. 

Ethical and Security Considerations 

In high-stakes environments where safety, security, or ethics are paramount, transparent models such 

as NHPP-ELL become not only preferred but necessary. AI-based SRGMs—despite their accuracy—

lack the auditability and formal verification needed for systems governed by standards such as DO-

178C (aviation), ISO 26262 (automotive), or FDA guidelines (medical devices). 

Moreover, AI models can be adversarially manipulated if not properly secured, a risk that is 

significantly lower in closed-form mathematical models. In defense applications, for instance, ensuring 

tamper-proof reliability predictions is critical. Parametric models offer verifiability and resistance to 

such attacks, reinforcing their role in mission-critical systems. 

Broader Implications for Software Engineering Practice 

The insights from this study have broader implications beyond reliability prediction: 

 Test Scheduling: NHPP-ELL can inform optimal test stopping times. 
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 Budget Allocation: AI-driven models help identify defect-prone modules for targeted 

investment. 

 Release Readiness: Hybrid models can provide release gating metrics combining statistical 

assurance and behavioral adaptation. 

 Continuous Learning: Adaptive AI-based SRGMs can be integrated into CI/CD systems for 

real-time reliability monitoring. 

In future, software reliability engineering may shift towards multi-model, adaptive ecosystems, where 

predictive analytics is continuously refined through feedback loops, incorporating both empirical and 

statistical rigor. 

Conclusion 

The relentless expansion of software systems into every facet of modern civilization has rendered 

software reliability not merely a desirable attribute but an existential prerequisite. From controlling 

pacemakers to managing nuclear reactors, the cost of software failure is not merely economic—it is 

moral and human. This research has meticulously examined two dominant paradigms in the 

contemporary landscape of Software Reliability Growth Models (SRGMs): the distribution-based 

stochastic models (exemplified by the NHPP-ELL framework) and the intelligent data-driven models 

(including ANN, FLANN, fuzzy logic, and ensemble learning techniques). 

The NHPP-based Extended Log-Logistic (ELL) model presented herein stands out for its mathematical 

elegance, interpretability, and compatibility with finite failure assumptions. With closed-form 

expressions for critical metrics such as the Mean Value Function (MVF), Intensity Function, Error 

Detection Rate (EDR), Remaining Errors (NRE), and Conditional Reliability R(t∣x)R(t|x)R(t∣x), this 

model provides a complete and verifiable toolkit for software engineers and reliability managers. Its 

performance across empirical metrics—such as MSE, NRMSE, R², and Theil statistics—has been 

exemplary, particularly in environments with limited or structured testing data. 

On the other hand, intelligent models such as Artificial Neural Networks (ANN), FLANN, and hybrid 

PSO-FLANN systems have demonstrated superior adaptability to nonlinear and noisy data patterns. 

Their strength lies in pattern recognition, generalization from experience, and responsiveness to shifting 

testing environments. However, these advantages are tempered by challenges in interpretability, 

computational overhead, and dependency on large training datasets. 

The comparative analysis unequivocally reveals that these two model classes are not mutually exclusive 

but profoundly complementary. Where mathematical models offer clarity and assurance, intelligent 

models offer adaptability and learning. The synthesis of both—through hybrid SRGMs—is not only 

desirable but increasingly inevitable in an era of agile development, CI/CD pipelines, and AI-driven 

decision-making. 

This paper also demonstrated, through mathematical derivations, numerical optimization, graphical 

modeling, and empirical benchmarking, that the NHPP-ELL model should be considered a gold 

standard for classical reliability modeling. Simultaneously, it acknowledged the irreplaceable utility of 

AI-based models for continuous integration environments, anomaly detection, and rapid reliability 

estimation. 

Key Contributions 

This study offers several novel and significant contributions to the field of software reliability 

engineering: 
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i. Unified Framework: Bridged the theoretical gap between distribution-based and intelligent 

reliability prediction techniques, enabling researchers to compare them on a unified plane. 

ii. Full Derivation of NHPP-ELL Model: Delivered a comprehensive derivation of the Extended 

Log-Logistic NHPP model, including MVF, intensity, and reliability functions. 

iii. Parameter Estimation via MLE: Developed and operationalized a complete MLE-based 

estimation routine using the Newton–Raphson method, suitable for real-world deployment. 

iv. Graphical Characterization: Illustrated key model behaviors using analytical plots, 

enhancing model interpretability and communication with non-technical stakeholders. 

v. Benchmarking Analysis: Provided detailed comparative evaluations of ANN, FLANN, PSO-

FLANN, and ensemble models versus NHPP-ELL on metrics such as MSE, R², and robustness. 

vi. Ethical and Operational Insights: Discussed broader issues including model interpretability, 

auditability, computational efficiency, and real-time deployment feasibility. 

Future Work 

The richness of this research opens several promising avenues for further exploration: 

A. Development of Hybrid SRGMs 

Future models should embed closed-form reliability functions (e.g., MVF from ELL) as priors or 

constraints in neural network architectures. Such hybrid models could retain the explain ability of 

parametric models while benefiting from the predictive power of deep learning. 

B. Real-Time Adaptive SRGMs 

Leveraging reinforcement learning and online training paradigms, adaptive models can evolve 

continuously with incoming test data. These real-time SRGMs could revolutionize DevOps reliability 

tracking, software canary releases, and critical system alerting. 

C. Multivariate and Contextual SRGMs 

Present SRGMs typically operate on scalar failure time data. Integrating multidimensional features 

(e.g., environmental conditions, tester behavior, code complexity metrics) could yield more context-

aware reliability models. 

D. Explainable AI in SRGM 

Future intelligent models must prioritize interpretability through technologies like symbolic regression, 

causal inference layers, and explain ability libraries (LIME, SHAP). Ensuring regulatory compliance 

and stakeholder confidence hinges on this. 

E. Security-Reliability Dual Modeling 

In high-assurance environments, reliability is increasingly intertwined with software security. 

Developing joint models that capture vulnerability discovery and fault reliability simultaneously is a 

challenging but critical future direction. 

F. Standardization and Reproducibility 

The SRGM community must work toward standardized datasets, benchmarking protocols, and open-

source toolkits to ensure reproducibility, comparability, and industry adoption of novel models. 
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Final Thoughts 
Software reliability engineering, at its best, is both a science and an art. It demands the rigor of 

mathematics, the adaptability of machine learning, and the pragmatism of engineering judgment. As 

software continues to power everything from deep-space probes to handheld medical devices, our 

ability to predict, manage, and assure its reliability becomes a moral imperative. This research stands 

as a foundational step toward a future where reliability prediction is not only precise but also intelligent, 

interpretable, and just. 
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