

ISSN: 1053-7899

A RESULT RELATED TO BRÜCK CONJECTURE AND LINEAR DIFFERENTIAL POLYNOMIAL

Shubhashish Das, Guddu Kumar* & Manoj Prasad Yadav**

Department of Mathematics Bharat Sevak Samaj College, Supaul-852131, Bihar, INDIA E-mail: dshubhashish.90@gmail.com

*Department of Mathematics Thakur Prasad College, Madhepura-852113, Bihar, INDIA E-mail: guddumth@gmail.com

**Department of Mathematics
Bhupendra Narayan Mandal University,
Madhepura-852113, Bihar, INDIA
E-mail: manojkumar946528@gmail.com

Abstract: In connection to Brück conjecture we improve a uniqueness problem for entire functions that share a polynomial with linear differential polynomials.

Keywords and phrases: Brück conjecture, entire function, polynomial sharing, linear differential polynomial

2020 Mathematics Subject Classification: 30D35

1. Introduction, Definitions and Results

Let f, g and a be entire functions in the open complex plane \mathbb{C} . If f-a and g-a have the same set of zeros with the same multiplicities, then we say that f and g share the function a CM (counting multiplicities). If, in particular, a is a constant, then we say that f and g share the value a CM.

For an entire function f, $M(r,f) = \max_{|z|=r} |f(z)|$ denotes the maximum modulus function of f. If the Taylor expansion of f is $f(z) = \sum_{n=0}^{\infty} a_n z^n$, then the power series $\sum_{n=0}^{\infty} |a_n| r^n$ converges for every r > 0 and so for any given r > 0, we have $\lim_{r \to \infty} |a_n| r^n = 0$. Hence the maximum

term $\mu(r,f) = \max_{n \geq 0} |a_n| r^n$ is well defined. Also we define $\nu(r,f)$, the *central index* of f, as the greatest exponent m such that $\mu(r,f) = |a_m| r^m$ {see p.50 [7]}.

$$\sigma(f) = \limsup_{r \to \infty} \frac{\log \log M(r,f)}{\log r} = \limsup_{r \to \infty} \frac{\log \nu(r,f)}{\log r}$$

and

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r,f)}{\log r} = \liminf_{r \to \infty} \frac{\log \nu(r,f)}{\log r}$$

are respectively called the *order* and *lower order* of f {see p.51 **[7]**}. Also

$$\sigma_2(f) = \limsup_{r \to \infty} \frac{\log \log \log M(r, f)}{\log r} = \limsup_{r \to \infty} \frac{\log \log \nu(r, f)}{\log r}$$

and

$$\lambda_2(f) = \liminf_{r \to \infty} \frac{\log \log \log M(r,f)}{\log r} = \liminf_{r \to \infty} \frac{\log \log \nu(r,f)}{\log r}$$

are respectively called the first iterated order or hyper-order and first iterated lower order or lower hyper-order of f {see Lemma 2 in 3}.

In 1977 L. A Rubel and C. C. Yang start considered the uniqueness problem of values sharing by a nonconstant entire function with its first derivative. This work of Rubel and Yang inspired a lot of researchers to explore such type of problems and extend it to different directions. In this direction, in 1996 R. Brück 2 proposed the following conjecture.

Brück's Conjecture: Let f be a nonconstant entire function such that $\sigma_2(f) < \infty$ and $\sigma_2(f) \notin \mathbb{N}$. If f and $f^{(1)}$ share a finite value a CM, then $f^{(1)} - a = c(f - a)$, where c is a nonzero constant.

Though Brück himself resolved the conjecture for a=0, the case $a\neq 0$ is not yet fully resolved.

For an entire function of finite order, G. G. Gundersen and L. Z. Yang [5] and L. Z. Yang [10] resolved and generalised Brück conjecture and proved the following results.

Theorem A. [5] Let f be a nonconstant entire function of finite order. If f and $f^{(1)}$ share one finite value a CM, then $f^{(1)} - a = c(f - a)$ for some nonzero constant c.

Theorem B. [10] Let f be a nonconstant entire function of finite order. If f and $f^{(k)}$ share one finite value a CM, then $f^{(k)} - a = c(f - a)$ for some nonzero constant c.

In 2004 J. P. Wang 2 extended Theorem B by considering polynomial sharing with its higher order derivatives and improved in the following manner.

Theorem C. \square Let f be a nonconstant entire function of finite order and a be a nonconstant polynomial. If f and $f^{(k)}$ share a CM, then $f^{(k)} - a = c(f - a)$ for some nonzero constant c.

Afterwards Z. X. Chen and K. H. Shon 4 and I. Lahiri and S. Das 6 extended Theorem A to a class of entire functions of unrestricted order and proved the following theorems.

Theorem D. \square Let f be a nonconstant entire function with $\sigma_2(f) < \frac{1}{2}$. If f and $f^{(1)}$ share a finite value a CM, then $f^{(1)} - a = c(f - a)$, where c is a nonzero constant.

Theorem E. [6] Let f be a nonconstant entire function with $\lambda_2(f) < \frac{1}{2}$ and $\sigma_2(f) < \infty$. Suppose that a = a(z) is a polynomial. If f and $f^{(k)}$ share a CM, then $\tilde{f}^{(k)} - a = c(f - a)$, where c is a nonzero constant.

In the paper, the aim is to improve Theorem C, Theorem D and Theorem E by considering the following problems:

- (i) Replacement of shared value by shared polynomial;
- (ii) Replacement of higher derivatives by linear differential polynomial.

We now state the main result of the paper.

Theorem 1.1. Let f be a nonconstant entire function such that $\sigma(f) \neq 1, \lambda_2(f) < \frac{1}{2}$ and

 $\sigma_2(f) < \infty$. Suppose that a = a(z) is a polynomial. Let $L(f) = a_0 f + a_1 f^{(1)} + \dots + a_k f^{(k)}$, where $k(\geq 1)$ is an integer and $a_0, a_1, \dots, a_k \neq 0$ are constants.

If f and L(f) share a CM, then L(f) - a = c(f - a), where c is a nonzero constant.

Following example shows that the condition $\sigma(f) \neq 1$ is essential.

Example 1. Let $f(z) = e^z + z$ and $L(f) = f^{(2)} - 2f^{(1)} + f$. Then f and L(f) share z CM but $L(f) - z = -2e^{-z}(f-z)$, where f satisfies $\sigma(f) = 1$.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. $\{p.5 \square\}$ Let $g: (0, +\infty) \to \mathbb{R}$ and $h: (0, +\infty) \to \mathbb{R}$ be monotone increasing functions such that $q(r) \leq h(r)$ outside of an exceptional set E of finite logarithmic measure. Then for any $\delta > 1$, there exists R > 0 such that $g(r) \leq h(r^{\delta})$ holds for r > R.

Lemma 2.2. {p.9 [7]} Let $P(z) = b_n z^n + b_{n-1} z^{n-1} + \cdots + b_0 (b_n \neq 0)$ be a polynomial of degree n. Then for every $\varepsilon(>0)$ there exists R(>0) such that for all |z| = r > R we get

$$(1-\varepsilon)|b_n|r^n \le |P(z)| \le (1+\varepsilon)|b_n|r^n.$$

Lemma 2.3. {p.51 **7**} Let f be a transcendental entire function. Then there exists a set $E \subset (1,\infty)$ with finite logarithmic measure such that for $|z| = r \notin [0,1] \cup E$ and |f(z)| = 1M(r, f) we get

$$\frac{f^{(k)}(z)}{f(z)}=(1+o(1))\left\{\frac{\nu(r,f)}{z}\right\}^k$$

for k = 1, 2, 3, ..., n, where n is a positive integer.

Let h(z) be a nonconstant function subharmonic in the open complex plane $\mathbb C$ and let

$$A(r) = A(r, h) = \inf_{|z|=r} h(z)$$
 and $B(r) = B(r, h) = \sup_{|z|=r} h(z)$.

Then the order $\sigma(h)$ and the lower order $\lambda(h)$ of h are defined respectively by

$$\sigma(h) = \limsup_{r \to \infty} \frac{\log B(r, h)}{\log r}$$

and

$$\lambda(h) = \liminf_{r \to \infty} \frac{\log B(r, h)}{\log r}.$$

The upper logarithmic density and the lower logarithmic density of $E \subset [1, \infty)$ are respectively defined by

$$\overline{\operatorname{logdens}}(E) = \limsup_{r \to \infty} \frac{\int_1^r \frac{\chi_E(t)}{t} dt}{\log r}$$

and

$$\underline{\operatorname{logdens}}(E) = \liminf_{r \to \infty} \frac{\int_1^r \frac{\chi_E(t)}{t} dt}{\log r},$$

where χ_E be the *characteristic function* of E.

The quantity $\lim_{r\to\infty}\int_1^r \frac{\chi_E(t)}{t}dt$ defines the logarithmic measure of E. It is easy to note that if $\overline{\operatorname{logdens}}(E)>0$, then E has infinite logarithmic measure.

Lemma 2.4. \square *Let* h(z) *be a nonconstant subharmonic function in the open complex plane* \mathbb{C} *of lower order* λ , $0 \le \lambda < 1$. *If* $\lambda < \beta < 1$, *then*

$$\overline{\operatorname{logdens}}\{r: A(r) > (\cos \beta \pi) B(r)\} \ge 1 - \frac{\lambda}{\beta},$$

where $A(r) = \inf_{|z|=r} h(z)$ and $B(r) = \sup_{|z|=r} h(z)$.

3. Proof of Theorem 1.1

Proof. By the hypothesis we have

$$\frac{L(f) - a}{f - a} = e^A,\tag{3.1}$$

where A is an entire function.

If A is a constant, then the result holds clearly. So we suppose that A is a nonconstant entire function and consider the following two cases.

Case 1. Let $\sigma(f) < \infty$. Then from (3.1) we get that A is a polynomial. If $\sigma(f) < 1$, then (3.1) implies that A is a constant. So $\sigma(f) > 1$ and therefore f is a transcendental entire function.

Now we suppose that A is a nonconstant polynomial.

Now for any z with |f(z)| = M(r, f) we get by Lemma 2.2 (choosing $\varepsilon = \frac{1}{2}$)

$$\left| \frac{a(z)}{f(z)} \right| \le \frac{M(r,a)}{M(r,f)} \le \frac{\frac{3}{2}|\alpha| r^{\deg a}}{M(r,f)} \to 0 \tag{3.2}$$

as $r \to \infty$, where α is the leading coefficient of the polynomial a(z).

Now by Lemma 2.3 there exists $E \subset [1, \infty)$ with finite logarithmic measure such that for $|z| = r \notin E \cup [0, 1]$ and |f(z)| = M(r, f) we get

$$\frac{f^{(j)}(z)}{f(z)} = \left(\frac{\nu(r,f)}{z}\right)^j (1 + o(1)),\tag{3.3}$$

for j = 1, 2, ... n, where n is a positive integer.

Now for all z with $|z| = r \notin E \cup [0,1]$ and |f(z)| = M(r,f) we get by (3.3)

$$\frac{L(f)}{f} = a_0 + \sum_{j=1}^{k} a_j \left(\frac{\nu(r, f)}{z}\right)^j (1 + o(1)). \tag{3.4}$$

From (3.1) we get

$$e^{A} = \frac{\frac{L(f)}{f} - \frac{a}{f}}{1 - \frac{a}{f}}.$$
 (3.5)

Now for all z with $|z| = r \notin E \cup [0,1]$ and |f(z)| = M(r,f), noting that $\sigma(f) > 1$, we get by (3.3), (3.4) and (3.5)

$$e^{A} = a_0 + a_k \left(\frac{\nu(r, f)}{z}\right)^k (1 + o(1)).$$
 (3.6)

Now from (3.6) we get for all large $|z| = r \notin [0,1] \cup E$ with |f(z)| = M(r,f)

$$|A(z)| = |\log e^{A(z)}|$$

$$= \left|\log \left(\frac{\nu(r,f)}{z}\right)^k\right| + o(1)$$

$$= |k\log \nu(r,f) - k\log z| + o(1)$$

$$\leq k\log \nu(r,f) + k\log r + 6k\pi$$

$$< 2k(\sigma(f) + 1)\log r + 6k\pi. \tag{3.7}$$

Also by Lemma 2.2 (choosing $\varepsilon = \frac{1}{2}$) we obtain for all large |z| = r

$$\frac{1}{2}|\alpha|r^{\deg A} \le |A(z)|,\tag{3.8}$$

where α is the leading coefficient of A.

Now the equations (3.6) and (3.7) together imply deg A = 0 and so A is a constant, which is a contradiction.

Case 2. Let $\sigma(f) = \infty$. We now consider the following two subcases.

Subcase 2.1. Let A be a nonconstant polynomial. Then from (3.6) we get for all large $|z| = r \notin [0,1] \cup E$ with |f(z)| = M(r,f)

$$|A(z)| \le k \log \nu(r, f) + k \log r + 6k\pi.$$
 (3.9)

Then from (3.8) and (3.9) we obtain for all large $|z| = r \notin [0,1] \cup E$ with |f(z)| = M(r,f)

$$\frac{1}{2}|\alpha|r^{\deg A} \le k\log\nu(r,f) + k\log r + 6k\pi. \tag{3.10}$$

Hence by Lemma 2.1 for given δ , $1 < \delta < \frac{3}{2}$ and (3.10), we get for all large values of r

$$\frac{1}{2}|\alpha|r^{\deg A} \le k\log\nu(r^{\delta}, f) + k\delta\log r + 6k\pi$$

and so

$$r^{\deg A}\left(\frac{1}{2}|\alpha|-\frac{k\delta\log r}{r^{\deg A}}\right)\leq k\log\nu(r^\delta,f)+6k\pi.$$

This implies deg $A \le \delta \lambda_2(f) < \frac{\delta}{2} < \frac{3}{4} < 1$, a contradiction. Therefore A is a constant. **Subcase 2.2.** Let A be a transcendental entire function. Since for an entire function A(z), $h(z) = \log |A(z)|$ is a subharmonic function in \mathbb{C} , and also from (3.1) we get $\lambda(h) = \lambda_2(A) \le \lambda_2(f) < \frac{1}{2}$.

Suppose that $H = \{r : A(r) > (\cos \beta \pi) B(r) \}$, where $A(r) = \inf_{|z|=r} \log |f(z)|$, $B(r) = \sup_{|z|=r} \log |f(z)|$ and $\beta \in (\lambda_2(A), \frac{1}{2})$.

Then by Lemma 2.4 we see that $\overline{\log \operatorname{dens} H} > 0$, i.e., H has infinite logarithmic measure. Also by Lemma 2.3 for $|z| = r \in H \setminus \{[0,1] \cup E\}$ with |f(z)| = M(r,f) we get

$$\frac{f^{(k)}(z)}{f(z)} = (1 + o(1)) \left(\frac{\nu(r, f)}{z}\right)^k. \tag{3.11}$$

Now by (3.2), (3.5) and (3.11) we get for all large $|z| = r \in H \setminus \{[0,1] \cup E\}$ with |f(z)| = M(r,f)

$$e^{A(z)} = a_0 + a_k \left(\frac{\nu(r, f)}{z}\right)^k (1 + o(1))$$

and so

$$|A(z)| = |\log e^{A(z)}|$$

$$= |\log \left(\frac{\nu(r, f)}{z}\right)^k| + o(1)$$

$$= |k \log \nu(r, f) - k \log z| + o(1)$$

$$\leq k \log \nu(r, f) + k \log r + 6k\pi$$

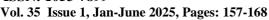
$$< 2kr^{\sigma_2(f)+1}. \tag{3.12}$$

Now by Lemma 2.1, there exists a constant c, 0 < c < 1 such that for all z satisfying $|z| = r \in H \setminus \{[0,1] \cup E\}$ with |f(z)| = M(r,f), we have

$$\left(M(r,A)\right)^{c} < |A(z)|. \tag{3.13}$$

Now by (3.12) and (3.13), we get

$$\frac{(M(r,A))^c}{r^{\sigma_2(f)+1}} < 2k. \tag{3.14}$$



This is impossible because A is transcendental and so $\frac{(M(r,A))^c}{r^{\sigma_2(f)+1}} \to \infty$ as $r \to \infty$. This proves the theorem.

References

- [1] P. D. Barry, On a theorem of Kjellberg, Quart. J. Math. Oxford (2), 15(1964), 179-191.
- [2] R. Brück, On entire functions which share one value CM with their first derivative, Result. Math., 30(1996), 21-24.
- [3] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22(1999), 273-285.
- [4] Z. X. Chen and K. H. Shon, On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8(2)(2004), 235-244.
- [5] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223(1998), 88-95.
- [6] I. Lahiri and S. Das, A note on a conjecture of R. Brück, Appl. Math. E-Note., 21(2021), 152-156.
- [7] I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, New York (1993).
- [8] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Math., Vol. 599, Springer-Verlag, Berlin (1977), 101-103.
- [9] J. P. Wang, Entire functions that share a polynomial with one of their derivatives, Kodai Math. J., 27(2004), 144-151.
- [10] L. Z. Yang, Solution of a differential equation and its applications, Kodai Math. J., 22(1999), 458-464.