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Abstract 

The semiconductor industry has been growing at a fast pace for the last decade. The ability to keep up with Moore's law and the 

ever-increasing chip complexity has become a tough challenge for manufacturers. The cost associated with testing these ICs has 

almost risen to that of the design. AI/ML is being actively explored as a solution to assist in almost every kind of issues arising in 

IC design and technology. IC testing plays a critical role in the production of reliable and functional chips. The increased complexity 

of the chips is leading to the introduction of new approaches and methods for improving existing and outdated methods. The test 

approach, automation, and tools used for 3D IC and FPGAs differ from the conventional ones used. The increase in chip complexity 

and the number of cores leads to a large power gouging. Test patterns for cores should be applied in a way that drastic changes to 

the current testing infrastructure and flows are avoided. Exploring opportunities for involving ML methods in different allied fields, 

such as screening equipment, failure cost reduction, optical DFT testing, etc. could also lead to improvements. 

Machine-learning techniques have been adopted to help IC testing. However, ML application for fault detection and localization 

in the digital IC test domain still needs to be investigated. The approach towards the delineation of a fault model is presented first. 

The intelligent classification of faults is discussed in detail. It is followed by the description of design and defect models for ICs. 

Finally, an approach to developing AI-based testing frameworks for next-generation semiconductor devices is proposed. Test and 

Design-For-Testability (DFT) techniques for next-generation semiconductor devices, such as carbon nanotube-PMOS, 3D-ICs, and 

M-IGBTs, are emphasized. Exploring fault modeling techniques applicable to the modeling of faults in N-GaN HEMTs is important 

to support future DFT techniques and structure. Challenges in generating and applying conventional BIST methodology to the 

reconfigurable single-chip smart camera are discussed while proposing some solutions to these challenges. 

Keywords: AI-based testing, testing frameworks, semiconductor devices, device testing automation, next-generation 

semiconductors, AI in electronics testing, smart testing systems, machine learning testing, automated chip testing, semiconductor 

AI tools

1. Introduction

The application of artificial intelligence (AI) in 

semiconductor device design, manufacture, testing, 

characterization, and reliability assessment is recently 

gaining much attention as a powerful and effective tool to 

meet the demands for maximized performance (both speed 

& power), lower geometries, lower costs, excellent quality, 

and reliability, enforcement of non-tariff trade barriers, etc. 

AI/ML techniques, like supervised learning (SL), semi-

supervised learning (SSL), unsupervised learning (UL), 

reinforcement learning (RL), meta-learning (ML), random 

forests (RF), probabilistic graphical models (PGM), deep 

learning (DL), generative models (GM) including generative 

adversarial networks (GAN), and replica exchange 

algorithms, are applied in semiconductor design, testing, and 

characterization throughout the semiconductor (non-

)automated design & test flows and systematic designs (dot 

designs, process design kits, and layout designs) of circuit 

blocks, pioneering models with unknown approximated 

closed-form transfer functions, discover trends in device 

parameters, physical effects, circuit architectures, etc. It is 

also comprehensively described how to incorporate AI/ML 

techniques in the classical IC design and testing flows [1]. 

To mitigate the data hurdle, a multi-alloy model-free meta-

learning-based hybrid AI and numerical approach is 

proposed for passive analog circuits. The trained meta-

RAJQ is the fastest known approach in the literature with 

reasonable accuracy cost trade-off. Both model-free and 

model-based AI methods are also applied to capture the 

efficiency and accuracy of a Nondominated Sorted Genetic 

Algorithm with a time-discrete simulation and those 

corresponding physical parameters. The new developments 

and a snapshot of the main methodologies in circuit design 

and test automation challenges for the aggressive 5 nm and 

below nodes are also expected to prompt researchers to 

contribute in these areas. The excellent IC reliability 

model+testing techniques and how AI/ML techniques can be 

utilized in them are also briefed. An overview of at-speed 

structured BIST for memory-based SOCs, along with the 

challenges and solutions, is also discussed. 
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2. Overview  of Semiconductor Devices 

Various semiconductor devices are analyzed in this section, 

including the physical structure and working principles of 

tunnel field effect transistors (TFETs), two-dimensional 

materials and transistors, and memristors. The designs and 

characteristics of simple TFET circuits with tunnel diodes 

are given as a verification example for simulations using a 

closely tied framework. 

With the continuous scaling down of MOSFETs, there has 

been a mounting concern over short-channel effects (SCEs) 

and leakage current, which lead to poor ON/OFF current 

ratio and restrictions of power supply scaling and circuit 

performance . As an alternative to planar MOSFETs, TFETs, 

which exploit the band-to-band tunneling (BTBT) 

mechanism, have drawn significant research interest because 

TFETs can achieve high ON-state current without the 

requirement of high supply voltage owing to the exponential 

dependence of tunneling current on the process or barrier 

controllability. 

Fig : 1 Assistive AI - Semiconductor Design 

Textured silicon is attractive due to its low processing cost 

and high volume for integratable photonic devices. 

Heterojunction TFETs based on crystalline textured silicon 

(CTS) and amorphous Silicon Oxide (a-SiO2) are reported 

for the first time. The TFET devices synthesized by ultra-

thin layer transfer and deposition illustrate a bottom 

conduction band energy bowl and an internal accumulation 

region, facilitating the electrostatic control over carrier 

inversion and extraction. Transistors exhibit a high 

ON/(OFF+ subthreshold swing) current ratio of 3.23 * 10^8 

(1400 times on-state current amplification) at 0.6 V, small 

variability of 19%, and subthreshold swing robust to the 

process variation with similar to 93.3% current reduction. 

Two-dimensional (2D) materials and transistors are targeted 

for those applications which require high-speed, high-

density, and low-power devices due to their ultra-thin body, 

low parasitic capacitance and power supply voltage, and 

robustness against SCE and off-state leakage. The 2D 

negative capacitance field effect transistors employ a 

ferroelectric 2D material as the dielectrics, breaking the 

Boltzmann limit on the sub-threshold swing, and exhibiting 

steep sub-threshold swing of 321 mV/decade, ultra-low 

leakage current of 0.106 nA/mu m, and excellent 

performance. The ferroelectric layer can be further 

horizontal stacked with other high-k dielectrics to be 

incorporated into current CMOS technology. Extension of 

2D material transistors to novel functions is also explored, 

including multi-type logic gates, multi-transistor (MTL) 

inverters, chaotic signal generation and motor action. 

Memristor (memory+resistor) is a two-terminal passive 

device with a nonlinear relationship between its current and 

the time integral of its voltage. Due to their multilevel 

resistance states and the highly controllable resistive 

switching, memristors have attracted tremendous research 

interest in developing RRAM (resistive random memory) as 

the embedded storage resource of future microprocessors. 

Memristor modeling is highly complex due to the stochastic, 

highly nonlinear, and non-ideal characteristics. For circuit 

simulation, a derived nonlinear interconnection of resistors 

with an order of magnitudes wider range is proposed to 

characterize memristors analytically. 

3. Challenges in Semiconductor Testing 

The design complexity of integrated circuits has grown as 

time-to-market periods have shortened. Decreased 

manufacturing geometries and increased transistor density 

have contributed to this escalation in complexity. For 

example, it is predicted that a single die in the 3 nm 

technology will consist of more than 100 billion transistors . 

Through reducing manufacturing costs and improving 

performance, semiconductor technology scaling has 

dramatically impacted the development of consumer 

electronics. Nevertheless, advanced semiconductor 

technology has introduced various challenges along with 

several opportunities, including yield loss, timing problems, 

low series resistance, limited power supply voltage 

headroom, substrate noise coupling, and increased leakage. 

These challenges are now common concerns for the 

semiconductor industry. As technology advancements push 

the miniaturization of semiconductor devices, maintaining 

their testability has grown in importance. Unfortunately, 

traditional structural test methods using test access ports are 

no longer effective. The challenges of testing integrated 
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circuits have surged due to the rapid growth of the 

semiconductor test industry. As one of the most challenging 

tasks in integrated circuit manufacturing, semiconductor 

testing is a large design, verification, and analysis problem 

that employs various sophisticated techniques and enormous 

computational resources [2]. Contemporary semiconductor 

devices are frequently so advanced that the majority of 

testing is automated. As a result, failure analysis and testing 

of semiconductor devices have evolved into a complicated 

multi-disciplinary operation, involving physics, electrical 

engineering, computer science, and often mechanical 

engineering or material science. Consequently, conducting 

testing and failure analysis on semiconductor devices 

currently necessitates highly skilled professionals and the 

use of sophisticated instruments in a well-designed 

laboratory. The additional complexity associated with next-

generation semiconductor devices requires more 

comprehensive test results, which should be gathered at 

higher speeds, especially for static tests. Additionally, 

devices need to be tested with greater accuracy, while 

different parameter distributions must be thoroughly 

analyzed to identify failure mechanisms. Furthermore, mask 

layout or its related dataset should be verified by 

reconstruction to achieve proper crosstalk and reliability, 

which often requires geometric manipulation at the 

nanometer scale. Adapting traditional test methods to meet 

these goals is doubly difficult due to the escalation of testing 

requirements on the one hand and the inaccessibility of 

devices on the other. 

Eqn:1. Machine Learning Model for Fault Prediction

 

4. Role of AI in Testing Frameworks 

AI techniques can support all facets of software testing 

cycle, including review of SRS and design, test case 

generation, selection, prioritization, execution, reporting, 

and regression testing, and in finding faults in various 

artifacts. AI techniques help address a vast majority of the 

existing problems in testing activities, especially those that 

are tedious, time-consuming, monotonous, and require 

profound domain knowledge. AI techniques have been 

successfully deployed in developing tools that support many 

testing activities including test case generation and 

prioritization. There are many open questions and challenges 

that are yet to be addressed regarding the application of AI 

to software testing problems, which would remain a focus 

for future research work. AI techniques have been widely 

used in a wide area of computer science domain. AI testing 

has received careful consideration from academics and 

communities for guaranteeing the functionality and safety of 

AI models imbibed in intelligent systems [3]. 

For text-based and visualization-based testing, is there a 

white-box testing technique that would deliver better results 

than the equivalent black-box technique? Test oracle 

problem is a companion of every researcher and practitioner 

working in the field of software testing. Despite continuous 

attempts to mitigate the problem of the test oracle, 

researchers have been able to solve this problem for a static 

subset of SUT's. As soon as the dynamic traits of the SUT 

start to display, the previous test oracle derived for the SUT 

starts to lose effectiveness. AI techniques have been 

employed to cope with this dynamism. 

5. Machine Learning Techniques for 

Testing      

Testing complexity is on the rise due to the rapid growth of 

the main-driven semiconductor sector. This makes it more 

difficult for testers to choose the right test setup and 

parameters for new devices. Recently developed AI-based 

testing frameworks can efficiently evaluate next-generation 

devices. Expert generator algorithms suggest various test 

setups and parameters, whereas simulator-based stochastic 

optimization identifies optimum setups and parameters [1]. 

For SOI FinFETS and multi-gate devices, recent AI 

predictors exhibiting prediction capabilities comparable to 

advanced SPICE simulators have made on-chip analog 

testing feasible. Predicted values can be used to calculate a 

test set of values. A classifier is used to filter opportunities 

needing expert examination, and results are presented 

compellingly. With growing design complexity and finite 

manufacturing yields, defects in couple or entire blocks 

render their area and power procured unnecessarily. AI-

based classification and global area loss analytics effectively 

contain excessive area consumption. 

Additionally, AI tools can enhance traditional methods for 

fault attribute generation and fault and error classification. 

Combining these tools can further tailor the generated 

profiles with respect to new faults and errors isolated by 
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theory. New AI test methods can be compared with 

traditional ones at each applied design maturity level. 

Industry-survey results on the capabilities of AI techniques 

for test and reliability are presented, along with their 

technical challenges and state-of-the-art developments. The 

survey covers architectures, algorithms, data sources, and 

application fields. 

5.1. Supervised Learning Approaches 

 In a supervised approach, the learning process can 

be divided into two phases: a learning phase and a testing 

phase. During the learning phase, a training set composed of 

both the device inputs and the expected outputs is used to 

teach the algorithm. During the testing phase, the trained 

model is evaluated using a separate test set. The most 

common supervised ML approaches are random forests, 

support vector machines, and artificial neural networks. 

Fig : 2 Artificial Intelligence and Machine Learning 

By predicting the output of a power amplifier (PA) and 

training a single-layer feed-forward neural network 

(SLFFNN), good predictive performance can be achieved 

even in the presence of noise and inter-domain design space. 

Careful tuning of hyperparameters can yield an average 

correlation coefficient of 0.985 for the validation set and less 

than 4.2 dB relative error between the predicted output and 

the expected output for all samples of the test set. Key 

insights about the expected output can be derived from a 

trained second-layer ELU activation function. In addition, 

by employing an ensemble method with inputs mapped to a 

200, 243 filter size, good outputs can be obtained, even with 

tight margins of 0.055 mA, as compared to the ideal 

expected output of 60 × 2.5 mA. 

A gated recurrent unit-based time-series forecasting and 

analysis framework for complex dynamic systems. A 

decoupled architecture employing GRU and LSTM 

networks to model the dynamic system where non-linear 

interactions exist across spatial dimensions can capture 

complex patterns in the data streams and have demonstrated 

remarkable predictive performance. A GRU-based 

forecasting model architecture is employed for five 

downstream tasks, which are compared against several 

benchmarks over several performance metrics. A novel post-

prediction approach and protocol to compute reconstruction 

error for open-set anomaly detection task can trigger off-the-

shelf anomaly detection algorithms to improve detection 

performance on unseen anomalies. 

5.2. Unsupervised Learning Techniques 

 Machine learning is a field of computer science 

that employs statistical techniques to enable computers to 

learn from data. It is often integrated into systems where 

explicit programming would be challenging or impossible. 

A machine learning approach for engineering applications 

include case-based reasoning systems, neural networks, 

genetic algorithms, support vector machines, clustering 

methods, control sense and response gains, and inference-

based systems or expert systems. In recent years, some 

applications have emerged through the massive use of 

machine learning techniques in different sectors such as the 

identification of uncharacteristic regions in WAFER MAP 

using deep learning approaches, general time-series 

forecasting methods using LSTM and attention models, and 

guidance on how to debug a semiconductor process using 

machine learning techniques. 

In AGGREGATE WAFER MAP DEFECT 

CLASSIFICATION using Deep Learning approach, 

predefined patterns are generated for individual defects. 

Optical SEM images of the defects are also captured and 

classified by a Convolutional Neural Network based 

classifier. The network is made deeper through successful 

trials on various defects to achieve a 98% classification 

accuracy. Each defect class has a pattern and a 

corresponding optical SEM image. Model-based approaches 

use predefined patterns. After applying model-based 

methods, if a defective pixel is found, verification routines 

capture SEM images of that region. The data acquisition is 

not only time consuming but also needs skilled engineers to 

distinguish the pixel's defect class as each defect class may 

contain a different process. The unsuitable conditions for 

memory use by these techniques emerge as it is difficult to 

discover new defect classes and the regenerative nature of 

the defects in semiconductor processes [4]. 

Class-Specific Autoencoder is proposed to reconstruct the 

input sample as the representation learns the degree of 

abnormalities. Data-Specific Variational Deep One-Class 

Classifier is suggested to minimize the reconstruction error 

by applying regularization in learning parameters. A new 

representation is learned using a conditional generative 
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network and one-class sinless classification is accomplished. 

To the best of the authors' knowledge, this work is the first 

to propose a one-similar class defect for wafer map 

classification by combining both GAN and one-class 

classification techniques. 

5.3. Reinforcement Learning in Testing

 Integrating the latest computing architectures in 

verification might open a new exciting path for accelerating 

the testing of next-generation semiconductor devices and 

cutting overall power and thermal budgets. Accelerators 

built using GPUs and other high-compute capabilities are 

perfect candidates to test deep-learning accelerators and 

frameworks commonly used in designing new chips. There 

are already significant computing resources dedicated to 

simulation and emulation but dedicated units for thorough 

testing are needed 

Eqn 2 :  Loss Function (Binary Cross Entropy for Fault 

Classification)

.While test purposes have long been integrated in the design 

process of semiconductor devices, semiconductor design 

technology, architectures, verification and testing 

methodologies are changing more dynamically than ever 

before. The rapid adoption of AI-based design and 

verification have opened many scientific challenges and 

questions across multiple disciplines. Novel algorithms, 

methods and systems to enhance semiconductor verification 

and validating of the AI based hardware accelerators are still 

primarily development and implementation. Deploying new 

algorithms and architectures in testing must be 

complemented with new methodologies in verification 

aimed to enhance test generation and assessment of coverage 

definitions according to eventual metrics. 

The emerging need for planning holistic benchmarks, define 

oracle metrics and elaborating validation flows aimed to 

encompass all the newly integrated algorithms and 

architectures become critical. Old definitions of safety, 

security and quality require re-explanation and realization. 

The adoption of and re-examination of these new approaches 

have significant impact on the design, functionality and 

power consumption of semiconductor devices. The new 

design paradigms open novel ways for testing of semantic 

errors and low-power budgets overall semiconductor 

architectures. Testability of soon to come algorithms, ways 

of representing and compressing information will need 

elaboration as well. 

6. Data Acquisition and Management 

Novel semiconductor devices will require an ecosystem of 

measurement tools and software to support their transition 

from laboratory to the production test floor. Taking 

memristors as an example, this highlights the necessary 

measurement steps, from the imaging of a wafer probe yield 

map through to a device’s specification and characterization, 

before ultimately discussing the creation of an independent 

programmable measurement and control frontend. A system 

capable of interfacing to this creation using a PXI platform 

is included and demonstrates features of software-defined 

test hardware. Finally, it describes novel device under test 

control methodologies which ensure the correct 

interrogation of devices without the need for external 

proprietary software. 

Testing stands as a critical and often neglected step within 

the development of both novel technologies and integrated 

circuitry. The ability to be able to interrogate the 

performance of devices yields valuable information about a 

device’s properties and its design space. This invariably 

popularizes a device, expediting its move from a laboratory 

to a production environment. In order for new classes of 

semiconductor, for example, memristive devices, testing 

requirements stand as a major hurdle to fielding them [6]. 

Non-linear, multi-terminal devices with complex internal 

states pose fundamental questions regarding large icon scale 

production. This results in multi-faceted challenges, from 

the programming of wafer probe yield maps to the 

specification and characterization at device level alone. 

Once a test approach, specification, and metric have been 

classically selected, a testing system must be created. For 

next-generation devices tested via analog methods the 

testing environment is a critical step. General-purpose 

instruments are not designed to be programmatically 

interfaced to and cannot provide any level of temporal or 

dynamic control on a device’s massive state space 

interconnectivity. As such, the development of an 

independently programmable measurement and control 

frontend is possible. Cardinal for the implementation of 

systems is their component or architecture selection. Each 

choice directly defines the potential of a system, from 

bandwidth through to ease of use. Ideally any systems should 

be configurable so they can be adapted for future devices. 

FPGA platforms have become ubiquitous as they offer a 

highly integrated and performant environment able to 
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perform real-time operation yet be re-programmed for future 

needs. 

6.1. Data Collection Methods  

 The first data collection method is data acquisition 

from testers and probe cards. These contain measurements 

from tested chips from the production of semiconductor 

chips. There are two forms of data collection: direct data 

extraction from tester machines involving hardware and 

software reverse engineering, and data pouring from tester 

machines to production databases [7]. The former can 

monitor raw waveforms from the test equipment directly, 

while the latter is usually records of results relevant to test 

outcomes (pass/fail). The probing timestamps when probing 

is done on each tested chip are especially valuable, 

correlating checks on chips with the viewing address matrix 

of the probe card responsible for them. 

In addition to recorded measurements from tested chips 

(digital array data), residual PC-generated data from 

simulation are also valuable. These data are commonly split 

into two forms. The first is related to physical layout, with 

information on continuity checks, device netlist checks, and 

connectivity checks presented in the CAD layout view. The 

second form has to do with SC drivers, test vectors, and 

parameters. Compact SPICE simulations in node-transistor 

view are also generated for simulation on low-end machines 

before production testing, and these contain thousands of 

SPICE-Script lines of executable MATLAB code. These 

data also highly correlate with extracts from vectors as 

inputs to the E8251A testers. 

Finally, there are manual interactions from the analysis team 

to perform failure analysis on bordering die images. The 

images themselves can also have information encoded into 

them, such as digitally kernel-processed qualitative and 

quantitative defect identification. These defects, correlated 

with failure reasons and physical observations of the silicon 

die, are documented manually with hash maps, and some of 

these knowledge can only be deciphered by engineers with 

experience in the technology. 

Fig : 3 AI in Semiconductors Industry 

6.2. Data Preprocessing Techniques  

 The authors chose to evaluate the performance of 

the proposed method based on simulated data sets. 

Compliance of the independent components extracted by 

ICA with the theoretical model was characterized with a 

power spectrum estimate and a correlation matrix. And the 

performance of the proposed method – detection of devices 

on which leftover devices could not act on all outputs 

(missing outputs) – was determined using the same 

characteristics. In addition, the limitation of the proposed 

method with devices having a different structure than the 

mock up process was shown by an example. The proposed 

method was applicable in the settings of dimensionality 

reduction techniques based on ICA. Wide and unrestricted 

signal processing methods could be used after these 

detections. 

Benchmark data consisting of simulated devices based on 

the distribution of output signal types of simulated devices 

were constructed for the use of designed methods. Pure 

signals were assigned to all 128 devices based on two 

different time stamps used in the mock process. These 

exported output signals were measured in a noise-free 

environment using simple and ideal possibilities. 

Measurement data of devices on flattering distributions were 

generated in order to mimic a realistic process. Besides 

output signals on the model devices, Gaussian white noise 

was added after defining complex noise. The standard 

deviation was manipulated as an additional parameter, 

allowing a wider or narrower range of artificial signals. The 

remaining actions were similar to the previous simulation 

process enabling the investigation of the behavior of ICA-

based technique under a realistic environment. 

After data gathering, model fitting, and calculation of 

divergence, filtering faulty dimensions based on multiple 

selection strategies would improve output for further 
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screening processes. Raw signals with lower dimensions 

significantly and at once improve visibility, ease operator 

workload and processing time, and prevent clause exits of 

unexpected data sources and against strong assumption 

conditions. 

6.3. Data Storage Solutions   

 Computer systems for deep learning require 

massive storage, high performance, and high bandwidth. 

Embedded memories such as SRAM or DRAM tightly 

coupled to logic elements are a promising solution for on-

chip data usage in compliance with these system 

requirements. However, due to strict timing closure 

constraints, sophisticated design and retraining approaches 

are needed to improve NN inference performance while 

accommodating for imperfections. This paper provides a 

thorough overview and analysis of FinFET 6T-SRAM-

computing-in-memory (CIM) integrated in a 7nm node 

ASIC platform and equipped with multiple latest in-band 

weight update capabilities. 

Edge applications require fast, energy efficient, and compact 

storage solutions for continuous data processing [11]. The 

gap between the power-hungry CPU and storage hierarchy 

with increasing performance and scaling limitations has 

inspired hardware-software co-design solutions to mitigate 

the memory bottleneck. Efforts in proprietary hybrid 

memory chip architecture and co-design of near data 

processing systems and software for optimal tensor data 

movement have been pursued. Excluding advanced neural 

network architecture-level techniques such as low precision 

quantization, hardware-friendly architecture exploration and 

software/hardware co-design for NN inference mapping 

remains challenging for many systems. ASIC with digital 

circuit memory components fabricatefully integrated 

memory processor-in-memory systems with emerging 

memory devices and hardwired NN function circuits. 

However, such systems are limited in applications because 

they need either expensive design iterations or inflexible 

accelerator architecture, which cannot accommodate 

emerging hybrid voltage/current mode DNN mapping and 

off-the-shelf memories with approximated computing and 

stochastic computing formats. 

Possible AI hardware solutions are more or less notable 

tradeoffs between languages and features. Adopting 

accelerators as sub-architectures is a more cost-efficient 

approach. A SRAM-computing-in-memory (CIM) 

architecture with weight storage in the memory array and 

binary bitwise computation in the peripheral logic is 

proposed and compatible with existing backbone technology 

nodes. A comprehensive overview of design and verification 

with architecture and domain rank analysis, variable 

bandwidth, operating margin, and analysis of memory per 

chip is also provided. Verification IP architecture-tuning, a 

full multi-way abstraction and layered approach testbench, 

and a coverage methodology with full functional, structural, 

and dynamic model coverage to reduce system-on-chip 

verification effort are also discussed. It enables ASIC VLSI 

projects to flexibly accomplish advanced hardware 

implementations with improved verification coverage and 

efficiency. 

7. Testing Methodologies 

Testing methodologies can be divided into two sections, 

namely test methods targeting a specific architecture and test 

generation methods. Overall, testing can be performed on 

both the algorithm-architecture and physical-architecture 

domains. A methodology for testing texture analysis 

algorithms and architectures has been presented. The 

ongoing work targets an automatic generation tool. The 

design introduces a pre-transformed texture in the test 

method, which is subjected to distinct attacks. A framework 

for testing dataflow-oriented architectures, which has been 

used to build a prototype architecture for convolution 

kernels, has been presented. The tool can generate tests for a 

wide range of architectures with various organization 

schemes. Test generation methods in the algorithm-

architecture domain can automatically generate tests. 

Recent approaches have integrated test generation with core 

synthesis in order to balance test performance and core 

efficiency. Efforts have focused on extending the input space 

to exploit input patterns with fewer cores in the final digit-

serial/parallel architecture with less cost/design-area 

overhead. It has been previously shown that the 

methodology can be used for iterative algorithms without 

making any approximation in the test process, and that it can 

be further extended to find fewer configuration memories 

with larger dimension by exhaustive searching. Thus, a fully 

automatic procedure which recursively partitions the core's 

state space and identifies the appropriate clocks for each 

subpartition has been developed. Here, the synthesis 

procedures at both the algorithm-architecture and physical-

architecture levels can be a concern, particularly from a 

production perspective. 

Functionally, the core has finite-state machines as inputs and 

outputs. The behavior of the core has been described in both 

a functional and a random way. To be able to describe 

related-to-power behaviors for each of the previously 

discussed physical architectures, automata-based models 

have been used. The goal is to synthesize a test probe which, 

once activated, would generate a specific sequence of states 
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for a limited amount of time. Symbolic models of analytic 

gain, as well as synthesis and partial observation models, 

have been proposed. Note that the sequential character of the 

first one can only be modeled with a blackbox 

representation, while the last one assumes some knowledge 

of the synthesis objective/architecture. 

7.1. Functional Testing  

 Automated Testing Frameworks 7.1. Functional 

Testing Testing frameworks for functional testing of next-

generation semiconductor devices are discussed. The 

automatic generation of functional tests for processors, 

instruction set processors, and systems-on-chip is covered in 

detail. The evolution of existing methodologies is discussed 

along with the proper use of synthesizable finite state 

machines, the specification of architectural state elements, 

and their state encoding for custom processor testing. 

Special emphasis has been placed on the testing of address 

decoders using higher-level functional libraries. The tooling 

directly generates test vectors for the automatic test 

equipment platform [12]. The automatic generation of 

instruction sequences for software-based self-test of 

processors and systems-on-chip is presented. The proposed 

approach for generating instruction sequences considers the 

complete architecture of processors. The instruction 

sequences are generated based on custom-defined 

architectural state elements named finite state machines. The 

design under test is a synthesizable RTL processor. The 

automation tool takes the architecture, including the 

synthesizable RTL design and Finite State Machine (FSM) 

description files corresponding to the architecture, as input. 

The instruction sequences generated for the FSM and those 

that can influence the state of the FSM are emphasized. 

It can be used to test grey-box and white-box IP cores too. 

Many approaches have been presented to tackle the problem 

of functional testing. Earlier methods did not target 

structural gate level faults. The fault models used were 

functional. A functional fault model depicts various 

functionalities of the processor like register decoding and 

instruction execution. This methodology was enhanced later 

to include complex instruction execution and cache access. 

A control fault model was proposed at the instruction level. 

This method considers the read/write instructions which set 

up the test separately and has a checking experiment for 

those instructions. A new methodology for functional testing 

was proposed. They proposed loading random instruction 

sequences into the cache and testing the processor using 

those instructions. This methodology was applied in an 

industrial setting. It detected many defective chips that 

passed traditional tests. 

Fig : 4 AI in Software Testing – Benefits 

7.2. Performance Testing   

 With continual advances in semiconductor 

technology, the requirements for next generation devices are 

becoming increasingly stringent. It is now a great challenge 

for the device community to meet these requirements and to 

develop more powerful and sophisticated semiconductor 

devices. Since the performance testing for high-speed 

devices becomes more involved and more complex, a testing 

simulation framework to test and not only validate but to 

discover these high-speed devices is now needed. As part of 

this effort, an initial artificial intelligence-based testing 

framework is presented. Device internal models can be 

extracted automatically from the incoming device digital test 

pattern file which is then used in combination with general 

purpose constraints-check knowledge bases and other 

constraints to develop efficient test sequencing through 

satisfiability search solvers. After characterizing the device, 

this information is fed to knowledge based failure analysis 

tools to diagnose possible faults/functions/abnormal 

behaviors causing the failed state. If only part of the response 

based on the expected from previous characterization is 

different, artificial intelligence-based heuristic search 

strategies can be employed to locate the most likely 

defect/good functions causing the deviation [12]. 

The performance testing of high-speed devices such as the 

analog devices in photonics, MEMS and RF, deep sub-

micron or fine-pitch devices is confronted with significant 

challenges. The static, dynamic and internal testing of these 

devices become very complex and challenging. Automatic 

testing is thereby very desirable. However, automatic testing 

for high-speed devices is very challenging. Firstly, the worry 

is whether more advanced devices necessarily require more 

advanced and sophisticated testing. Secondly, in the absence 

of good models, both knowledge based/model based and 

simulation based automatic testing of such devices is 

extremely difficult and challenging. Thirdly, secure test 

strategies are another significant challenge. It is first shown 

using a mixed problem that under certain circumstances even 

secure tests can be obtained automatically. Also non-

destructive and semi-destructive test strategies are given for 

safety-critical situations. 
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7.3. Reliability Testing   

 With the dawn of the information age at the end of 

the 1950s, and with it the invention of information 

processing devices that transformed items such as 

pencil/paper-based messages to information processing 

machines, one can easily recognize how small, discrete 

systems came together to produce systems that were ever 

growing bigger. It was when cryptography was first applied 

to computers that the idea of reliability became paramount 

in determining the ability of a system to run its code. The 

term “errors,” became synonymous with the term “crashes.” 

As the systems grew bigger and interconnections became too 

complicated to track, the difficulty understanding became 

ever more cryptic. The process of tracking the errors became 

almost impossible. 

An insight from the beginning of the quest to make accurate 

calculations arose when looking at a multi-paper process of 

simulation, realized that there were 10+ cases in a run and 

tested the reliability of the system. They predicted the kind 

of curve below that described the number of papers against 

time. As soon as a number of papers grew, some divergence 

occurred, but the underlying cause of these errors was not 

exposé, being bound up in faith in the nature of computation 

and devices that were equitable. In just a hundred years, the 

faith was challenged from several angles of human and 

machine computation. Two major aspects of their validity 

were tested here: one as systems grew, reliability became 

critical and estimates of pursing the pseudo laws of 

reliability rise carried curve. The second was as research 

progressed understanding accepted errors came to dominate. 

The amazing leaps in miniaturization in the last fifty years 

have more than a century’s progress in the same scale of 

currency. Besides the making of smaller devices, smaller 

system was also being addressed because of the consonant 

growth in connectivity and complexity. The philosophy of 

exploring smaller systems was less effort or cost but clarity 

in exposition of principles such as searching more ways of 

displaying the many niches systems have. Very early on, that 

many detects made non-binary systems had to all operate 

under a threshold and this alone would mask away 

understanding simplicity in both the number of threshold and 

that noise would be independent of size. This seemed an 

entirety ghost-like path since [13]. 

 

8. AI-Driven Automation in Testing 

Testing all the components on wafers of semiconductor 

devices has traditionally focused on checking their 

functionality. After fabrication, however, defects are 

sometimes observed that give rise to a reduction in 

performance or a full breakdown of the active components 

during normal operation. The test schedule is built from run-

to-run, based on the insights from the last test runs, but still 

results in considerable testing time and resources. 

Furthermore, new devices with hysteresis effects and 

nonlinearities are increasingly challenging the automation of 

tests in the semiconductor industry. Variations of devices 

from run-to-run are currently considered an obstacle to 

algorithms using test appearances fed in by the engineers 

directly. Instead, the testing of each asset is based on low-

level electrical signals with model-output diagnosis to 

increase the follow-up test efficiency. 

More effort has been put to develop machine-learning 

algorithms directly to automate testing for semiconductor 

digital devices. However, it is still hard to get a broad 

generalization to tackle the wide variations from wafer to 

wafer. Two key challenges are stressed. First, the hidden 

layer distributions across devices may change. In the context 

of deep learning, this is known as a domain shift. Second, 

new device designs mean new test configurations for which 

the existing methodology has to be properly reshaped. To 

bridge them, graph networks and reinforcement learning 

were employed for understanding devices’ structures, 

behaviors, and building test schedules. By building a 

reusable decomposition of the design verification task with 

graph representation and procedural knowledge learning 

based on an event-driven simulation engine, flexibility in 

testing different devices with different technologies can be 

provided. 

The multilayer perceptrons or fully connected networks 

produce a black-box representation of the correct responses 

for circuit nets. Using deep learning approaches in testing is 

expensive and complicated in both model and data. Broad 

attention is failed to attract in terms of application and 

settlement. To address this, Hierarchically Spatial and 

TempOral convolution architecture is studied. It exploits the 

properties of both the recurrent unit and convolution kernel 

to replace fully connecting layers and provide further 

improvement for functional testing of large designs. A 

sample generation method utilizing combinational logic 

characteristics can make its applicability and portability very 

straightforward to individual logic designs. An accurate and 

fast test generation is covered in detail for large designs with 

a five-layer variable-sized neural network and a generative 

adversarial network. 

8.1. Automated Test Generation 

 Automated test generation methods for core-based 

designs, based on the RTL or gate-level netlists, have been 
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surveyed recently. Techniques to perform automated test 

pattern generation (ATPG) from a structural representation 

of the circuit are widely used in the industry for testing 

digital circuits. High-level or behavioral representation of 

the design, typically expressed in an RTL Hardware 

Description Language (HDL) like Verilog/SystemVerilog, 

can also be exploited to derive input test vectors for digital 

circuits. These high-level test vector generation methods are 

valuable when the design netlist is not available and in the 

simulation-based functional validation of a processor and a 

SOC. With the availability of ATE-compatible test patterns 

for many industrial design cores, a need arises to validate 

these core test programs effectively [12]. 

Conventional simulators cannot test designs that may take 

several hours or days to exhaustively simulate. Compared to 

functional simulation, fault simulation is an order of 

magnitude slower. This is because a conventional simulator 

needs to execute test patterns, whereas a fault simulator only 

needs to analyze the state/event result of an executed pattern. 

Functional test generation is an important, complex, and 

time-consuming problem. A large number of purely 

automatic test generators are available today. This is 

significant because, although there are very accurate 

simulators for DSPs, the two key problems of test generation 

for DSPs need to be automatically solved and are still open. 

Fig : Artificial Intelligence in Boosting Semiconductor 

This paper describes a logic-level test generation system 

specifically for DSP architectures. The test generation 

system, provided with a description of the circuit, consists of 

new test generation algorithms for arbitrary DSP controllers 

and a set of generic test generation programs for a flexible 

architecture and a set of DSP specific test generation 

programs. The test generation programs are based on 

assignable faults. They can be used both to provide a 

complete set of gate-level equivalent test patterns and to 

evaluate a design’s testing problems, which is crucial for the 

design and architecture of DSPs. 

8.2. Test Execution Automation  

 To ensure effective software and hardware 

integration testing for next-generation semiconductor chips, 

it is crucial to automate the execution of the defined tests by 

linking the hardware monitor with the UVM-based 

testbench. Test execution automation is typically 

implemented by using the UVM stimulus generation and 

checking capability in conjunction with standard 

architecture components. Traditionally, a basic test 

execution automation implementation is comprised of a 

three- to five-part component hierarchy consisting of 

transaction sender, transaction receiver, scoreboard, 

reference model, and optionally a waveform dump. When 

using UVM test execution automation, the events in the 

design under test (DUT), such as message receipts and event 

occurrences, are monitored. The StartEmmon and 

StopEmmon commands from the UVM testbench are sent to 

set up the emmon instance settings after which tests are 

executed and monitored through the Emmon RX interface 

with either messages or register reads . 

The vis output interface for UVM test execution automation 

has been communicated from the hardware side by defining 

a set of messages and a UVM component to encapsulate the 

monitoring capability; the normal UVM test execution 

automation components are supplied from the UVM library. 

Test execution automation implementation based on a 

special-purpose architecture component, such as a monitor 

or scoreboard, requires developing new architectural 

components using the HDL of the design. Such architectural 

components are harder to modify later and require running a 

synthesis tool to implement the component on the hardware 

side. Implementing test execution automation without 

intervention from the architecture is preferred since it allows 

reusing or relocating architecture designs with minimal 

modification on either side. 

Existing implementation setups rely on formal protocol 

documents that will become obsolete with re-

implementation of either the testbench or design sides. 

Introducing a new test will require a test execution 

automation reimplementation effort due to the different test 

transaction formats. Implementing an executable version of 

the protocol in a standardized way that becomes a single 

point of truth on the configuration and enables easy and 

dynamic communication between the architecture and UVM 

would help mitigate difficulties. A protocol description 

interface or a code generator may assist in producing the 

message serializer or deserializer on either side. Concerns 

about test execution automation extend to monitoring the 

monitoring architecture due to its complexity and 

performance significance, which warrants custom 

components to implement monitoring test execution 

automation.  

9. Case Studies 
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A framework for robust, AI-enhanced testing of next-

generation semiconductor devices, which offer performance 

improvements over previous generations by providing a 

multitude of device states, is needed. A key aspect of a chip 

with thousands of voltage-controlled analysis parameters is 

bridging the existing test gap between task-based testers that 

interface with multiple test parameters but have no control 

over the test settings and task-agnostic testers that present 

settings exhaustively but test in board-level integrated 

circuits that are smaller than the chip. In addition, continuous 

improvements to AI models require flexible frameworks for 

sensor data collection, structuring, and model training. A 

novel framework for AI-based testing of next-generation 

semiconductor devices has been developed, which addresses 

these needs through novel routines to enhance and reduce the 

test. It is envisioned that the AI-enhanced structure will 

change how next-generation semiconductor tests will be 

executed in the future [12]. A novel testing framework for 

next-generation semiconductor devices supporting task-

based testing developed through collaboration with 

respective partners. There is an urgent need for testing next-

generation semiconductor devices due to their inherent 

difficulties in generating test parameters despite the 

improvement performance over their previous generations 

by offering a myriad of device states. A key aspect of a chip 

with thousands of voltage-controlled frequency, voltage, and 

current analysis parameters is the test gap between, on one 

side, traditional task-based testers that seamlessly interface 

with a multitude of test parameters but have no control over 

the specifics of the test settings, and on the other side, task-

agnostic testers that present parameter settings exhaustively 

but test in board-level integrated circuits that are only a 

fraction of the size of the chip. 

A challenge arising from the scan-based architecture of 

advanced semiconductor devices is in the selection of the 

start state of the scan test. A novel technique called Local 

Scan State Setting Technique (L-SST) for a better start scan 

state selection after these adjustments have been made has 

been explored. Formalism for the development of models 

that capture the dynamic behavior of a process design at the 

device level (in compact form) and the circuit level has been 

introduced. Testing of software-controlled switched-

capacitor single-phase or two-phase sample-and-hold 

circuits in frequency counting and single-pulse input modes 

has been considered. Test strategies that accomplish test 

vector minimization for a compelling class of electronically-

testable devices have been presented. On-the-fly test vector 

generation allows for immediate compact test vector 

construction as the device information is learned, offering 

promise for generating compact test vectors. Such test vector 

generation is particularly needed for ICs being fabricated 

and probed in a very small prototype quantity. 

9.1. AI in ASIC Testing   

 As device design rules shrink to 5 nm and below, 

overall chip keeping time is more crucial than ever. As ASIC 

design teams rush to sign off on their chips, they must deliver 

the documentation and test vectors used to verify that the 

chip’s design conforms with its specifications. Many ASIC 

vendors have an internal test group that ensures each 

manufactured chip is 100% tested. These ASIC vendors are 

usually fabless companies that do not fabricate their chips. 

They ship the GDSII design files to a wafer foundry for 

manufacturing. They also ship the ATE files and 

documentation used for testing to a different group 

responsible for testing the chip. All done correctly ensuring 

each produced wafer is tested for functional, parametric, and 

maybe even structural defects due to the manufacturing 

process. However, as the number of devices under test 

increases in the ATE, the test duration grows, and the 

amount of vectors to send to the ATE must increase 

exponentially to ensure proper coverage. Further 

complicating things, as technology node smaller nodes are 

being blindly pursued, design engineers are placing multiple 

blocks on a die containing several millions of gates routed at 

multiple levels of metal. Most of this effort is directed at 

decreasing the 3D area or its power but not attention has been 

placed in ensuring the testability of these gigantic chips [1]. 

A number of well defined limits exist for the maximizing 

achievable test time. For one, ATE signal generator speed 

and bandwidth may be limiting factors. Taking into account 

skew due to different op-amps, transmission line effects and 

probe delays, the time needed to drive a net from the ATE 

on and off may be considerably longer than a simple logic 

gate delay. Another limit is the propagation delay introduced 

by combinational logic which can prevent propagation of 

any faults applied on the primary inputs to the ATE output 

levels. This delay, crucial design specs and not accounting 

for temperature, power supply and aging related corner cases 

all lead to test escapes. 

Testing frameworks based on AI for FPGAs were studied. 

The two major issues in AI-based testing frameworks for 

SoCs/CPLDs were discussed. One is that a finite-state 

machine (FSM) or a block diagram is used to model a 

synchronous circuit. While neural works and deep learning 

are popular, neither has been adopted for FSM or block 

diagram. The potential of using a recurrent neural network 

(RNN) or deep learning for FSMs and fuzzy networks for 

block diagrams is highlighted. The second issue is that the 

test delivery needs to execute an individual test. As different 

kinds of circuits need different types of tests, a possible way 

of organizing tests based on their types is highlighted [1]. 

In addition to SoCs and CPLDs, a work on testing FPGA 

devices is also listed. A loadable finite state machine (FSM) 
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for the random test pattern generation of testing embedded 

DSPs in FPGAs is introduced. The key issue is to find a 

checkable fault model for temporal fault behavior. A few 

simple test patterns are given as an example to show this 

algorithm. The example is tested on the organizational chart 

of the Xilinx FPGA embedded DSP architect without 

considering the area of the circuit. A new test pattern 

generation algorithm for temporal cycle slip fault tests of 

TPG-based built-in self-testing of FPGAs is proposed. The 

calculable f-mode as well as a highly simultaneous and 

effective compact test pattern generation algorithm for TPG-

based BIST is also introduced. 

Eqn : 3. Signal Integrity Model (RC Delay 

Approximation) 

 

A loadable FSM for the random test pattern generation of 

testing embedded DSPs in FPGAs is also presented. The 

proposed TPG is based on a geometric multi-valued random 

algorithm to reduce the MTTF. With the proposed loadable 

FSM, the proposed TPG can be used for the built-in self-test 

of the sequential unit of a modern DSP in an FPGA. The 

encrypted test patterns can be loaded into a loadable FSM on 

hardware during production testing. Once loaded, the 

transparency of the TPG operation is hard to breach, 

especially for the random generation TPG. 

Data choices evident while building the distributions: 

Validation SCs: 80% of SCs. Training: 10% of SCs. Testing: 

10% of SCs. Response predictions: Realistic. Peak power 

density provided using a distribution for variability. PCT 

query retrieves parameters for SCs to create and query speed 

simulations. Simulation sequences: 2s, 150s, and 1ns per SC 

per tested chip. Injection profile: Simulated injection tests 

over 9 workloads, screen time 48s. Combined profiles 

simulated for over 4 days over those workloads. Each chip's 

different loaded efficiency and number of SCs prune 

potential injections from first testing. Variability rally 

identifies realityindicating SCs and generates ICs. One IC 

and actionable heavy task can account for 10-20% of peak 

power prediction error. Symmetric messages cut down 

workload and timing pools and increase rally speed. Batch-

wise races combine several chips and ranked setups to 

reduce rally time. 

Overall, the presented case study demonstrates the value of 

a framework integrating fast-ahead AI and distributions for 

SCM diagnosis, in terms of elevated decisionmaking 

accuracy, coverage, and speed. Nevertheless, bias in training 

data must be addressed to better generalize to applications 

out of distribution. Moreover, to boost production diagnosis, 

model validation completeness becomes important, which is 

especially challenging when resource-driven sampling must 

be attempted, presenting opportunities for further research. 

Intelligent AI-based Scheduling for Parallel Production Test 

in 2.5D ICs. Algorithmic nature amongst structures and 

access difficulties with state information make automatic 

scheduling across diverse parallel ICD blur in theory, and in 

practice, estimation and its evaluation in 2.5D heterogeneous 

systems are costly and slow under state complexity growth. 

Online distance-ratio greedy method generates good test 

assignments in terms of adaptability and speed for Routing 

Planning of 2.5D Test. Combined with runtime analyses on 

Evaluation-Consistent Tests, this framework can be well-

applied and evaluated for general ICD as balanced condition 

becomes more practical than rigorous state equivalence. In 

the cases examined, the speedup is desirable and the 

assignment quality holds. 

10. Evaluation Metrics for Testing 

Frameworks 

Evaluation is an essential and challenging part of testing 

frameworks and has been specified as a key aspect to be 

considered in evaluating testing frameworks. Evaluation 

aims to assess the testing framework, the capability of the 

testing framework with respect to various test goals, and the 

generated test cases with respect to various evaluation 

metrics. A plethora of evaluation metrics exist to evaluate 

the general testing framework. Besides that, forming a 

foundation of evaluation metrics tailored to black-box AI-

based testing frameworks is equally essential due to both the 

properties of AI-based systems and the existing black-box 

testing frameworks. Menacingly failures of autonomous 

systems could result in loss of life, property, or reputation. 

Thorough testing is essential to present convincing evidence 

of system safety before deployment. 

To this end, generative black-box testing frameworks that 

can generate tests and validate the output of complex 

autonomous systems are essential but challenging to 

develop. Very few testing frameworks exist and address only 

a subset of the required properties while relying on the non-

trivial setup of white-box components. In addition, such 

frameworks can only be used by testing experts to capture 

the completeness of the generated tests. Therefore, a general 

fully black-box testing framework that can generate tests for 
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autonomous video object detection systems at runtime while 

being easy to setup and use is sought. To this end, formally 

define the properties that make up such a general testing 

framework by building upon the existing evaluation metrics 

for AI-based testing frameworks. 

The black-box testing framework is within reach, and 

prototyping pipelines for runtime test generation and 

evaluation of such systems is also vital. A case study of an 

intelligent traffic management system is conducted to 

provide a concrete demonstration of the black-box testing 

framework. An extensive set of testing goals, test properties, 

and evaluation metrics is outlined with respect to the black-

box capability of the testing framework. The concrete choice 

of properties covered by the prototype is also justified. An 

introduction to how to setup and use the prototype and some 

real-life testing results that demonstrate the performance of 

the prototype are presented. Testing is a popular and widely-

used technique for ensuring the reliability of software 

systems. In recent years, AI-based approaches have been 

proposed and widely adopted in many areas such as 

computer vision, natural language processing, and game 

playing. 

10.1. Accuracy Metrics   Next-

generation AI-based accelerators consist of densely placed 

heterogeneous processing elements (PEs). A PE can 

comprise multiply-accumulate (MAC) units, digital logic 

circuits, memory arrays, or weight storage. Because these 

PEs perform arithmetic operations on a large number of 

inputs through tight schedules, they are more susceptible to 

failures, particularly systematic defects caused by 

manufacturing variations. Although safety nets can be 

added, this causes significant overhead in area, power, and 

performance. With a high degree of process variance, the 

increase in systematic defects could lead to excessive yield 

loss and delays in time-to-market. Recent AI-based 

accelerators consist of 30-100 billion transistors and 

inquiries to hundreds of thousands of PEs. However, even 

state-of-the-art test resources with a large test throughput are 

likely to test only 5-15% of PEs in the time available for 

manufacturing test. 

Other accelerators like GPUs and TPUs continue to scale 

horizontally by packing more transistors and adding up to 

thousands of PEs. Being packed in a small chip footprint, 

circuit faults in these PEs could significantly degrade 

performance. At the same time, more chip resources for 

auxiliary circuitry to recover yield could drive the cost up by 

tens of millions. Because of the tradeoff between success-

failure/speed/cost, accuracy-resilience offers an avenue for 

yield recovery through design-level approaches without 

hardware modifications. AI tasks are largely irreversible; the 

stochasticity of backprop-based training can provide 

bounded error resilience, even in the presence of faults. So, 

it is speculated that as many weights, PEs, and synapses are 

disabled, the result of widely used DNN tasks could remain 

within acceptable bounds. Using software techniques for 

drop-out, pruning, and quantization of weights, the area and 

power of the designs can be severely reduced, and 

acceleration, lessening memory power consumption, can 

also bring an accuracy-tolerance dimension to the design 

space. 

10.2. Efficiency Metrics   

 For characterizing the performance 

of a testing framework, different metrics 

can be utilized. Throughput relates to the 

number of units tested per time unit and is 

dependent on the test configuration. For a 

given test set containing m tests for a 

design with k test configurations, with Tj 

being the time it takes to apply a test j, 

where 1 ≤ j ≤ m, the throughput is derived 

from the following.Throughput = Number of 

units tested / Time 

It can be seen that throughput is dependent on test 

application time, number of test configurations, and number 

of test sets. In characterizing testing framework 

performance, throughput cannot be directly employed as it 

depends on many factors. Therefore it is often abstracted and 

that depends only on hardware design but not on the test set 

composition is desired to evaluate testing frameworks. Two 

metrics are proposed as follows. 

(1) Efficiency of Configuration: Given M configurations and 

N tests (or lumped tests), efficiency of the configuration is 

defined as the time unit resource used by a unit test. 

Efficiency of Configuration = Max(T1, T2, ..., TM) / (T1 + 

T2 + ... + TM) 

Where Ti is the total test application time of the ith 

configuration. To be a unit test, a configuration should be 

selected from those that take less time than all others in 

accordance with the current test set in application. The 

efficiency of the configuration in a failed configuration can 

be regarded as a ratio of time unit resource consumed by the 

configuration for the corresponding test set to the maximum 

test application time of all configurations. 

(2) Efficiency of Design: Given N tests, D designs, and M 

configurations in each design, the efficiency of the design 
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with respect to the time unit resource consumed by the 

corresponding testing framework is defined as the maximal 

resource enhanced by re-distributing tests on the current test 

set among different designs, whereas a design beyond the 

available configuration cannot be used in the evaluation. 

Efficiency of Design = (Max( 0, Efficiency1, Efficiency2, ... 

EfficiencyD) + 1) / 2 

10.3. Cost Metrics    

 Cost metrics, or factors that cost f's, often behave 

like accuracy metrics, or factors that measure how good 

some criteria are. The only difference is that relatively few 

desirable criteria (parameters) are subjected to cost metrics, 

though an exhaustive list of cost metrics for event-test-model 

simulation systems can easily be lengthy. Potentialities of 

interest include tester cost, test program, test execution time, 

and macrospatial size. Cost metric expressions are either 

numerical parameters themselves or functions of numerical 

parameters that map into numerical parameters. 

Cost metrics can be either unrestricted or restricted. 

Unrestricted cost metrics take on real-number values that are 

unbounded and unrestricted. Restricted cost metrics are 

computed from uniformity over some set of numerical 

domains, and the worst-case cost metric for the 

configuration is translated into a unique (uniform) value in 

some metanumerical domain that conveys more information 

than the numerical values of its constituents do. The value in 

the meta-numerical domain is then derived from the direct 

computation of the worst-case cost metric on the 

constituents' numerical domains [14]. 

Potentialities of interest are either ordinal based and given 

language lexical interpretations or cardinal based and strictly 

numerical so that at least a portion of their numerical 

domains is composed of integers only. However, the strength 

of cardinality or the rigour of the interpretation given to the 

potentialities is not of direct concern. Potentialities should 

either, by numerical computations, yield some unbounded 

numerical values, or uniformly by some worst-case meta-

numerical value. 

11. Integration of AI Frameworks into 

Existing Systems 

Integration of AI Frameworks into Existing Systems.The 

fast-paced advances in the semiconductor industry are 

creating further challenges for AI-based testing frameworks. 

Since the deployment of AI-based semiconductor devices is 

just at the beginning stages, working on a generic AI-based 

testing framework that can be integrated into existing 

verification testing flow is a huge challenge. Another 

challenge is that many of the AI-based designs target one 

specific application area for automotive, big data, or cloud, 

and they do not pose a great need for a generic solution that 

can cover a wider application area. In addition, converting 

RTL to netlist and post-layout parasitics is becoming an 

essential part of the verification process. Fast adaptation of 

AI-based testing frameworks in the existing testing flow is 

difficult to achieve. 

Addressing all the aforementioned challenges is necessary to 

build a robust AI-based testing framework that can keep 

pace with the fast-growing semiconductor industry. 

Considering the fast advancement in the semiconductor 

industry, starting with the better form of design 

representation data, metadata of the circuits relating to edge-

case design criteria, etc., is considered as the scope of the 

research. Developing an automated testing framework for 

custom test pattern generation and full-chip testing of 

telecom chipsets has been a significant development. A 

terabit search engine ASIC, a 33M-gate chip containing 

custom designs, a 14-ns, 48M-bit SDRAM, and protocol 

testing chips were manufactured and tested using this 

framework. Similar frameworks have also been developed 

in other disciplines. In a field programmable gate array 

manufacturing, a low-cost production test system providing 

fully programmable on-chip test capability, custom on-chip 

instrumentation, and scan-based, built-in self-test 

architectures has been developed. 

Fig : 5 Artificial intelligence framework 

Developing a practical AI-based testing framework is not 

just assigning AI tools in the verification flow, creating more 

automation, or generating comprehensive tests from all 

design corners. Creating a good AI-based testing framework 

needs to understand the intricate balance among 

pervasiveness of the application and its architecture, 

workload adaptation vs algorithmic precision, input-aware 
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analog computation and architecture saturation, power 

supply and clock/gating. Integrating cutting edge AI 

hardware designs requires developing new testing 

innovations as well. Most importantly, there is no off-the-

shelf testing framework that can directly adopt these designs. 

Studying edge-case design criteria from silicon data itself 

should be the key for future testing research focus. 

 

12. Future Trends in Semiconductor 

Testing 

The evolution of semiconductor VLSI testing technologies 

has also affected digital and mixed signal domain ICs. On 

the mixed-signal domain IC testing front, following the 

apparent successes of alternate and RF technology in the 

market, new trends on testing and reliability front are 

evolving. With the rise of 5G devices, such systems’ 

complexity will rise, leading to a further need for advanced 

knowledge on the performance of the devices involved. 

However, while this reliability has gained increased 

attention over the last decade, it is becoming clear that there 

are challenges ahead. A way to quantify reliability is 

reliability physics, but these methodologies and models are 

not automatically suitable and need adaptation for various 

fields. As a still relatively new field, the integration and 

availability of multi-domain information representation 

models and notation standards is sparse and actively the 

object of early development. Another issue is the increased 

complexity of systems, which makes it cumbersome to 

identify reliability-critical states, transitions, and failure 

modes [1]. On the other hand, Semiconductor-IC testing has 

evolved across the various domains and ever-increasing 

levels of complexity. To address the testing of increasingly 

complicated devices Artificial Intelligence-based 

tools/workflows have become more generic, making use of 

ML algorithms more focused. Many of these “futuristic” 

solutions will impact design opportunities as well as 

performance themselves and thus usher in entirely new 

testing methodologies. AI-driven test synthesis solutions 

have shown improved test quality and reduced test cost in 

many scenarios. More importantly, these tools address large 

and complicated scenarios across various design paradigms, 

which would be nearly impossible to implement or evaluate 

manually. 

12.1. Emerging AI Technologies  

 Thrensho Institute of Technology has studied 

longer than a decade the innate high ambient energy 

efficiency of analogue computation based on devices with 

physical nonlinearity. Semiconductor devices based on fluid 

dynamics with low frequency oscillation and ultrafast 

response times have been used to implement two-

dimensional (2D) reservoir computing a rich class of 

learning networks based on complex spatiotemporal 

dynamics in real-valued 2D delay feedback systems. 

Research on devices based on coupled oscillators are gaining 

momentum to chart novel learning paradigms, such as those 

involving spiking neurons and analogue synapses. The 

adaptability of devices in terms of learning time and 

available parameter space to explore is a major systematic 

challenge, considering the speed, variability, and parasitics 

of quantum dot laser DMLs along with the stringent 

fabrication requirements and costs. For the responsive time 

of 250 ps, a learning time of 20 ms can be achieved, while 

the degree of symmetry of lasers used varied substantially. 

Analogous to the natural selection of traversed DML 

parameters, this results in the discovery of a 95% test 

accuracy that rivals DMLs with the same topology and 

hyperparameters. Several spectra of gain and delay 

responses exhibit the system’s memory retainment, with 

multi-peak gaining the largest memory efficiency. 

Software simulation is often provided to explore the 

software framework and devices deep learning tasks via 

spiking neural network languages and neural architecture 

search methods. However, GDML devices have their own 

shortcomings in deep learning such as explicit training costs 

per image of inferences and inflation hardware deployment 

footprints to accommodate weights storage. A progressive 

structure and layout method is then proposed to achieve 

resilient on-chip learning inference to handle GI. Moreover, 

significant progress is presented on utilizing conductive 

nanostructures in volcanicenergy training sDMLs more 

applicable to real-world AI tasks, especially for near-sensor 

and on-chip learning scenarios. On the other hand, learners 

trained under a network truncation are found to maintain 

consistent inferences across diverse deployments. 

12.2. Trends in Semiconductor Design

 Semiconductor devices are placed inside systems 

such as well-defined functions. In functional terms, they 

usually become block diagrams. System-level testing is 

executed using behaviors of such block diagrams in a 

purposeful manner. Automated testing is done through a 

test-bus and a compacting vector tree structure using a 

standard protocol to minimize routing complexity in order to 

computer test time for high throughput. Test time is 

compared with algorithm implemented test time at the 

device design time to ensure that a detector design change is 

functional. Chip-level testing takes place at wafer test before 

trimming where high-speed functional testing techniques 
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based on burst-sampling are implemented. AI techniques are 

utilized to seek out bad chips to minimize probe time 

durations. The reliability of semiconductor devices becomes 

a major issue when they are incorporated into larger systems, 

because system-level DUTs are often out of the realm of 

detection by means of voltage and current measurements. 

With TE vibration and crushing effect, burned-out fails are 

presented that cannot be detected at a system level. To catch 

them at a device level as soon as possible, reliability test 

structures are constructed that can be used for c-bin 

inspection afterward. Using the same structure, reliability 

tests of devices undergoing challenge tests can also be 

performed before their packaging. 

AI techniques are extensively applied for in-depth inspection 

of the reliability test after stress as transient ringing on 

MOSFET turn-off high-side driver patterns holds 

information on bad devices. Knowledge-based diagnosis 

tools successfully classify randomness in terms of their 

waveforms, which correspond to multiple failed devices on 

a die. The proposed waveforms are also analyzed based on 

detection sensitivity by calculation of thumbprint 

waveforms. For smaller and faster devices with higher 

complexity, robust design is needed. A voltage step changed 

examination technique after hot-switching feet successfully 

catches out-of-spec devices. A MEM DMD and gate-speed 

gradual-change control are developed for lower versions of 

devices subsequently released in order to avoid burn failures 

during probing. AI techniques are utilized to extend 

manufacturing capability by busy-unit utilization predictive 

modeling. For devices having rare fails, rather than detecting 

suspect time stamps, aid text mining techniques are utilized 

to predict defective machines. Detection units that can be 

used as the floor plan of scores are developed so that the risk 

of undetected fails can be reported. The above techniques are 

well-validated in high volume testing of mass-produced 

devices. 

13. Ethical Considerations in AI Testing 

The past decade has seen an extraordinary rush in the 

developments of Artificial Intelligence (AI) technology and 

applications. The wide-ranging adoption of AI for various 

applications, such as health care, finance, and employment, 

among others, has resulted in concerns regarding the 

reliability of AI models for these critical applications . In 

order to curb these concerns on the reliability of AI models, 

AI model testing has become a key area of research. 

Intensive research efforts have, thus, been directed toward 

testing classical models like software and machine learning 

based classifiers, and various testing techniques testing 

frameworks have been put forward. Various tools for testing 

of classical models like software defects and fault-based 

testing have been proposed. Most recently, testing of spam 

filters has been suggested. Similarly, testing techniques and 

frameworks for the testing of ML models has been actively 

researched in the recent past. Some feature perturbation 

based testing techniques for testing of ML models have been 

suggested, along with a framework called TESS for testing 

ML classifiers that utilizes fuzz with input perturbations to 

generate adversarial inputs. A series of attack-based testing 

frameworks for testing adversary removal techniques of ML 

models have also been proposed. On similar lines, testing 

techniques for the metamorphic properties of fairness, and 

robustness of ML classifiers have been put forward. As key 

governance aspects, ethical considerations in testing AI/ML 

models with the aim of fostering trust and confidence is an 

active area of research. In this context, this article discusses 

key challenges for testing ethical properties of AI/ML 

models and suggests potential solutions to address these 

challenges. Ethics in AI has widely become a topic of 

discussion within the industry, academia, and regulatory 

bunker. The ultimate expectation from AI is to improve 

productivity, work satisfaction, and efficiencies in the 

society and organization [16]. There are many ethical 

consequences and challenges for AI based systems as the 

growth of AI/ML/Automation is expected to be more 

ubiquitous. These ethical challenges mainly arise in two 

parts namely, ethical aspects during design time and testing 

time of AI models. Ethical design principles such as fairness, 

transparency, accountability, and security are actively 

researched areas. Apart from design principles, monitoring 

of ethical properties of AI models during testing phase is 

equally important. 

14. Regulatory Standards and Compliance 

Regulatory standards and compliance are critical 

components of safety during the design, fabrication and 

process of any type of semiconductor devices. 

Semiconductor device design requires compliance to for 

another reason; design, fabrication and implementation are 

immensely different processes. Architecture and design is 

done on a high level. Libraries and tools that are used during 

design can't be used after they have left the CAD domain. 

Therefore, additional attention is paid to surveillance of the 

foundry by regulatory agencies and/or standard giving 

bodies [7]. All of which have their strict compliance 

regulations. Additionally, some devices remain classified 

due to national security concerns. Simple devices are usually 

done in-house on mature or proprietary technology at a 

trusted foundry. The advantage is that process weaknesses 

or non-compliance is easier to fix. More advanced devices, 

usually MEMS based, require scanning of process 
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technologies on a weekly basis. In this case one or more 

fabrication processes to which the design has to comply are 

selected by an implemented interface. This can include 

fixing crooked mirrors, adding an additional oxide layer, 

changing a thickness or not allowing via cuts in specific 

layers. Stage-Gate procedures and vendor design rules much 

like IEEE Std 1500 go one step further to assure both 

foundry compliance and device robustness. 

Much effort is spent on design-for-assembly and design-for-

manufacturability aspects. These aspects are very different 

from that of IC's. General procedures and rules are by all 

foundries and there are some commercial tools. But these 

tools are mainly utilized by the fabricator. To speed up the 

process and improve robustness of the designs, both in-

house and COTS tools are utilized. Additionally, the through 

silicon via designs of MEMS and stacked ASIC's were 

integrated and rules were developed . 

15. Conclusion 

With the fast development of AI techniques in design and 

manufacturing, a pressing need of the semiconductor 

industry is to explore the feasibility of harnessing AI 

capabilities for the verification and testing of new-

generation devices. Some application opportunities in the 

design and manufacturing stages of semiconductor devices 

and the revisions of established standards are identified. 

Early engagements and investigations are discussed in 

regards to AI-Aided Test Engineering Frameworks (AI-

TEF) that can support further exploration. The initial version 

of some sector and domain applications and AI-ML aware 

extensions of related design and manufacturing tool chains 

are presented. It is predicted that by 2030, AI would yield 

significant contribution to semiconductor verification and 

testing among other domains, and establish a high-level 

industry standard of best practices. Addressing both the 

urgencies and importance, opportunities and challenges of 

harnessing AI capabilities for semiconductor verification 

and testing are discussed . 

It is predicted that by 2030, AI would yield significant 

contribution to semiconductor verification and testing 

among other domains, and establish a high-level industry 

standard of best practices. Since 4 years ago, substantial fast 

achievements on discovery of advanced AI methods, 

adaptive exploring the design and manufacturing circuits 

have been addressing design challenges of verification and 

testing. At the same time, this has also raised challenges for 

establishing new standards to harness AI capabilities. For 

testing and/or testability, the revision of the effectiveness 

indicators and the penalties to AI-aided information flow 

obfuscation could be easy milestones to reach. More 

comprehensively, establishment of acceptability indicators 

and rules, which can be evaluated as rigorous as 5 sigma with 

blind test, would be a tough challenge cross multiple 

technical domains. 

References: 

[1] Challa, S. R., Malempati, M., Sriram, H. 

K., & Dodda, A. (2024). Leveraging Artificial 

Intelligence for Secure and Efficient Payment 

Systems: Transforming Financial Transactions, 

Regulatory Compliance, and Wealth 

Optimization. Leveraging Artificial Intelligence 

for Secure and Efficient Payment Systems: 

Transforming Financial Transactions, Regulatory 

Compliance, and Wealth Optimization (December 

22, 2024). 

[2] Revolutionizing Automotive 

Manufacturing with AI-Driven Data Engineering: 

Enhancing Production Efficiency through 

Advanced Data Analytics and Cloud Integration . 

(2024). MSW Management Journal, 34(2), 900-

923. 

[2]           Pamisetty, A. (2024). Application of 

agentic artificial intelligence in autonomous 

decision making across food supply chains. 

European Data Science Journal (EDSJ) p-ISSN 

3050-9572 en e-ISSN 3050-9580, 1(1). 

[3]           Paleti, S., Mashetty, S., Challa, S. R., 

ADUSUPALLI, B., & Singireddy, J. (2024). 

Intelligent Technologies for Modern Financial 

Ecosystems: Transforming Housing Finance, Risk 

Management, and Advisory Services Through 

Advanced Analytics and Secure Cloud Solutions. 

Risk Management, and Advisory Services 

Through Advanced Analytics and Secure Cloud 

Solutions (July 02, 2024). 

[4]           Chakilam, C. (2024). Leveraging AI, 

ML, and Big Data for Precision Patient Care in 

Modern Healthcare Systems. European Journal of 

Analytics and Artificial Intelligence (EJAAI) p-

ISSN 3050-9556 en e-ISSN 3050-9564, 1(1). 

[5]            Kummari, D. N. (2023). Energy 

Consumption Optimization in Smart Factories 

Using AI-Based Analytics: Evidence from 

Automotive Plants. Journal for Reattach Therapy 



 MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

 ISSN: 1053-7899  
 Vol. 34  Issue 2, July-Dec  2024, Pages: 1249-1271 

 

 
https://mswmanagementj.com/ 

 1289 

and Development Diversities. 

https://doi.org/10.53555/jrtdd.v6i10s(2).3572 

[6]           Federated Edge Intelligence: Enabling 

Privacy-Preserving AI for Smart Cities and IoT 

Systems. (2024). MSW Management Journal, 

34(2), 1175-1190. 

[7]           Koppolu, H. K. R. (2024). The Impact of 

Data Engineering on Service Quality in 5G-

Enabled Cable and Media Networks. European 

Advanced Journal for Science & Engineering 

(EAJSE)-p-ISSN 3050-9696 en e-ISSN 3050-

970X, 1(1). 

[8]           Sriram, H. K. (2024). A comparative 

study of identity theft protection frameworks 

enhanced by machine learning algorithms. 

Available at SSRN 5236625. 

[9]          Paleti, S., Singireddy, J., Dodda, A., 

Burugulla, J. K. R., & Challa, K. (2021). 

Innovative Financial Technologies: Strengthening 

Compliance, Secure Transactions, and Intelligent 

Advisory Systems Through AI-Driven 

Automation and Scalable Data Architectures. 

Secure Transactions, and Intelligent Advisory 

Systems Through AI-Driven Automation and 

Scalable Data Architectures (December 27, 2021). 

[10]         Singireddy, J. (2024). AI-Driven Payroll 

Systems: Ensuring Compliance and Reducing 

Human Error. American Data Science Journal for 

Advanced Computations (ADSJAC) ISSN: 3067-

4166, 1(1). 

[11]         Chava, K. (2023). Integrating AI and Big 

Data in Healthcare: A Scalable Approach to 

Personalized Medicine. Journal of Survey in 

Fisheries Sciences. 

https://doi.org/10.53555/sfs.v10i3.3576 

[12]         Challa, K. (2024). Enhancing credit risk 

assessment using AI and big data in modern 

finance. American Data Science Journal for 

Advanced Computations (ADSJAC) ISSN: 3067-

4166, 1(1). 

[13]         Pandiri, L. (2024). Integrating AI/ML 

Models for Cross-Domain Insurance Solutions: 

Auto, Home, and Life. American Journal of 

Analytics and Artificial Intelligence (ajaai) with 

ISSN 3067-283X, 1(1). 

[14]         Malempati, M. (2024). Leveraging cloud 

computing architectures to enhance scalability and 

security in modern financial services and payment 

infrastructure. European Advanced Journal for 

Science & Engineering (EAJSE)-p-ISSN 3050-

9696 en e-ISSN 3050-970X, 1(1). 

[15]         Recharla, M. (2023). Next-Generation 

Medicines for Neurological and 

Neurodegenerative Disorders: From Discovery to 

Commercialization. Journal of Survey in Fisheries 

Sciences. https://doi.org/10.53555/sfs.v10i3.3564 

[16]         Kaulwar, P. K., Pamisetty, A., 

Mashetty, S., Adusupalli, B., & Pandiri, L. (2023). 

Harnessing Intelligent Systems and Secure Digital 

Infrastructure for Optimizing Housing Finance, 

Risk Mitigation, and Enterprise Supply Networks. 

International Journal of Finance (IJFIN)-ABDC 

Journal Quality List, 36(6), 372-402. 

[17]         Kalisetty, S., & Lakkarasu, P. (2024). 

Deep Learning Frameworks for Multi-Modal Data 

Fusion in Retail Supply Chains: Enhancing 

Forecast Accuracy and Agility. American Journal 

of Analytics and Artificial Intelligence (ajaai) with 

ISSN 3067-283X, 1(1). 

[18]         Chava, K., Chakilam, C., Suura, S. R., & 

Recharla, M. (2021). Advancing Healthcare 

Innovation in 2021: Integrating AI, Digital Health 

Technologies, and Precision Medicine for 

Improved Patient Outcomes. Global Journal of 

Medical Case Reports, 1(1), 29-41. 

[19]          Annapareddy, V. N., Preethish Nanan, 

B., Kommaragiri, V. B., Gadi, A. L., & Kalisetty, 

S. (2022). Emerging Technologies in Smart 

Computing, Sustainable Energy, and Next-

Generation Mobility: Enhancing Digital 

Infrastructure, Secure Networks, and Intelligent 

Manufacturing. Venkata Bhardwaj and Gadi, Anil 

Lokesh and Kalisetty, Srinivas, Emerging 

Technologies in Smart Computing, Sustainable 

Energy, and Next-Generation Mobility: 

Enhancing Digital Infrastructure, Secure 

Networks, and Intelligent Manufacturing 

(December 15, 2022). 



 MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

 ISSN: 1053-7899  
 Vol. 34  Issue 2, July-Dec  2024, Pages: 1249-1271 

 

 
https://mswmanagementj.com/ 

 1290 

[20]         Meda, R. (2024). Enhancing Paint 

Formula Innovation Using Generative AI and 

Historical Data Analytics. American Advanced 

Journal for Emerging Disciplinaries (AAJED) 

ISSN: 3067-4190, 1(1). 

[21]         Sai Teja Nuka (2023) A Novel Hybrid 

Algorithm Combining Neural Networks And 

Genetic Programming For Cloud Resource 

Management. Frontiers in HealthInforma 6953-

6971 

[22]         Suura, S. R. (2024). The role of neural 

networks in predicting genetic risks and enhancing 

preventive health strategies. European Advanced 

Journal for Emerging Technologies (EAJET)-p-

ISSN 3050-9734 en e-ISSN 3050-9742, 2(1). 

[23]         Kannan, S. (2024). Revolutionizing 

Agricultural Efficiency: Leveraging AI Neural 

Networks and Generative AI for Precision 

Farming and Sustainable Resource Management. 

Available at SSRN 5203726. 

[24]         Transforming Customer Experience in 

Telecom: Agentic AI-Driven BSS Solutions for 

Hyper-Personalized Service Delivery. (2024). 

MSW Management Journal, 34(2), 1161-1174. 

[25]         Singireddy, S. (2024). Applying Deep 

Learning to Mobile Home and Flood Insurance 

Risk Evaluation. American Advanced Journal for 

Emerging Disciplinaries (AAJED) ISSN: 3067-

4190, 1(1). 

[26]         Leveraging Deep Learning, Neural 

Networks, and Data Engineering for Intelligent 

Mortgage Loan Validation: A Data-Driven 

Approach to Automating Borrower Income, 

Employment, and Asset Verification. (2024). 

MSW Management Journal, 34(2), 924-945. 

[27]         Srinivas Kalyan Yellanki. (2024). 

Building Adaptive Networking Protocols with AI-

Powered Anomaly Detection for Autonomous 

Infrastructure Management . Journal of 

Computational Analysis and Applications 

(JoCAAA), 33(08), 3116–3130. Retrieved from 

https://eudoxuspress.com/index.php/pub/article/vi

ew/2423 

[28]        Transforming Customer Experience in 

Telecom: Agentic AI-Driven BSS Solutions for 

Hyper-Personalized Service Delivery. (2024). 

MSW Management Journal, 34(2), 1161-1174. 

[29]         Sriram, H. K., Challa, S. R., Challa, K., 

& ADUSUPALLI, B. (2024). Strategic Financial 

Growth: Strengthening Investment Management, 

Secure Transactions, and Risk Protection in the 

Digital Era. Secure Transactions, and Risk 

Protection in the Digital Era (November 10, 2024). 

[30]         Paleti, S. (2024). Neural Compliance: 

Designing AI-Driven Risk Protocols for Real-

Time Governance in Digital Banking Systems. 

Available at SSRN 5233099. 

[31]          Sriram, H. K., Challa, S. R., Challa, K., 

& ADUSUPALLI, B. (2024). Strategic Financial 

Growth: Strengthening Investment Management, 

Secure Transactions, and Risk Protection in the 

Digital Era. Secure Transactions, and Risk 

Protection in the Digital Era (November 10, 2024). 

[32]         Pamisetty, V. (2023). Leveraging AI, Big 

Data, and Cloud Computing for Enhanced Tax 

Compliance, Fraud Detection, and Fiscal Impact 

Analysis in Government Financial Management. 

International Journal of Science and Research 

(IJSR), 12(12), 2216–2229. 

https://doi.org/10.21275/sr23122164932 

[33]         Komaragiri, V. B. Harnessing AI Neural 

Networks and Generative AI for the Evolution of 

Digital Inclusion: Transformative Approaches to 

Bridging the Global Connectivity Divide. 

[34]         Annapareddy, V. N. (2024). Leveraging 

Artificial Intelligence, Machine Learning, and 

Cloud-Based IT Integrations to Optimize Solar 

Power Systems and Renewable Energy 

Management. Machine Learning, and Cloud-

Based IT Integrations to Optimize Solar Power 

Systems and Renewable Energy Management 

(December 06, 2024). 

[35]         Pamisetty, A. (2024). Leveraging Big 

Data Engineering for Predictive Analytics in 

Wholesale Product Logistics. Available at SSRN 

5231473. 



 MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

 ISSN: 1053-7899  
 Vol. 34  Issue 2, July-Dec  2024, Pages: 1249-1271 

 

 
https://mswmanagementj.com/ 

 1291 

[36]         Dodda, A. (2024). Integrating Advanced 

and Agentic AI in Fintech: Transforming 

Payments and Credit Card Transactions. European 

Advanced Journal for Emerging Technologies 

(EAJET)-p-ISSN 3050-9734 en e-ISSN 3050-

9742, 1(1). 

[37]         Gadi, A. L., Kannan, S., Nanan, B. P., 

Komaragiri, V. B., & Singireddy, S. (2021). 

Advanced Computational Technologies in 

Vehicle Production, Digital Connectivity, and 

Sustainable Transportation: Innovations in 

Intelligent Systems, Eco-Friendly Manufacturing, 

and Financial Optimization. Universal Journal of 

Finance and Economics, 1(1), 87-100. 

[38]         Adusupalli, B., & Insurity-Lead, A. C. 

E. The Role of Internal Audit in Enhancing 

Corporate Governance: A Comparative Analysis 

of Risk Management and Compliance Strategies. 

Outcomes. Journal for ReAttach Therapy and 

Developmental Diversities, 6, 1921-1937. 

[39] Suura, S. R., Chava, K., Recharla, M., & 

Chakilam, C. (2023). Evaluating Drug Efficacy 

and Patient Outcomes in Personalized Medicine: 

The Role of AI-Enhanced Neuroimaging and 

Digital Transformation in Biopharmaceutical 

Services. Journal for ReAttach Therapy and 

Developmental Diversities, 6, 1892-1904. 

[40]         Kummari, D. N. (2023). AI-Powered 

Demand Forecasting for Automotive 

Components: A Multi-Supplier Data Fusion 

Approach. European Advanced Journal for 

Emerging Technologies (EAJET)-p-ISSN 3050-

9734 en e-ISSN 3050-9742, 1(1). 

[41]         Sheelam, G. K. (2024). Deep Learning-

Based Protocol Stack Optimization in High-

Density 5G Environments. European Advanced 

Journal for Science & Engineering (EAJSE)-p-

ISSN 3050-9696 en e-ISSN 3050-970X, 1(1). 

[42] AI-Powered Revenue Management and 

Monetization: A Data Engineering Framework for 

Scalable Billing Systems in the Digital Economy  

. (2024). MSW Management Journal, 34(2), 776-

787. 

[43] Sriram, H. K. (2023). The Role Of 

Cloud Computing And Big Data In Real-Time 

Payment Processing And Financial Fraud 

Detection. Available at SSRN 5236657. 

[44] Paleti, S., Burugulla, J. K. R., Pandiri, 

L., Pamisetty, V., & Challa, K. (2022). Optimizing 

Digital Payment Ecosystems: Ai-Enabled Risk 

Management, Regulatory Compliance, And 

Innovation In Financial Services. Regulatory 

Compliance, And Innovation In Financial 

Services (June 15, 2022). 

[45] Singireddy, J. (2024). AI-Enhanced Tax 

Preparation and Filing: Automating Complex 

Regulatory Compliance. European Data Science 

Journal (EDSJ) p-ISSN 3050-9572 en e-ISSN 

3050-9580, 2(1). 

[46] Karthik Chava. (2022). Harnessing 

Artificial Intelligence and Big Data for 

Transformative Healthcare Delivery. International 

Journal on Recent and Innovation Trends in 

Computing and Communication, 10(12), 502–

520. Retrieved from 

https://ijritcc.org/index.php/ijritcc/article/view/11

583 

[47] Challa, K. Dynamic Neural Network 

Architectures for Real-Time Fraud Detection in 

Digital Payment Systems Using Machine 

Learning and Generative AI. 

[48] Lahari Pandiri. (2023). Specialty 

Insurance Analytics: AI Techniques for Niche 

Market Predictions. International Journal of 

Finance (IJFIN) - ABDC Journal Quality List, 

36(6), 464-492. 

[49] Recharla, M., & Chitta, S. AI-Enhanced 

Neuroimaging and Deep Learning-Based Early 

Diagnosis of Multiple Sclerosis and Alzheimer’s. 

[50] Malempati, M. (2023). A Data-Driven 

Framework For Real-Time Fraud Detection In 

Financial Transactions Using Machine Learning 

And Big Data Analytics. Available at SSRN 

5230220. 

[51] Pandiri, L., Paleti, S., Kaulwar, P. K., 

Malempati, M., & Singireddy, J. (2023). 

Transforming Financial And Insurance 

Ecosystems Through Intelligent Automation, 



 MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

 ISSN: 1053-7899  
 Vol. 34  Issue 2, July-Dec  2024, Pages: 1249-1271 

 

 
https://mswmanagementj.com/ 

 1292 

Secure Digital Infrastructure, And Advanced Risk 

Management Strategies. Educational 

Administration: Theory and Practice, 29 (4), 

4777–4793. 

[52] Lakkarasu, P. (2024). Advancing 

Explainable AI for AI-Driven Security and 

Compliance in Financial Transactions. Journal of 

Artificial Intelligence and Big Data Disciplines, 

1(1), 86-96. 

[53] Gadi, A. L., Kannan, S., Nanan, B. P., 

Komaragiri, V. B., & Singireddy, S. (2021). 

Advanced Computational Technologies in 

Vehicle Production, Digital Connectivity, and 

Sustainable Transportation: Innovations in 

Intelligent Systems, Eco-Friendly Manufacturing, 

and Financial Optimization. Universal Journal of 

Finance and Economics, 1(1), 87-100. 

[54] Meda, R. (2023). Developing AI-

Powered Virtual Color Consultation Tools for 

Retail and Professional Customers. Journal for 

ReAttach Therapy and Developmental Diversities. 

https://doi.org/10.53555/jrtdd.v6i10s(2).3577 

[55] Nuka, S. T., Annapareddy, V. N., 

Koppolu, H. K. R., & Kannan, S. (2021). 

Advancements in Smart Medical and Industrial 

Devices: Enhancing Efficiency and Connectivity 

with High-Speed Telecom Networks. Open 

Journal of Medical Sciences, 1(1), 55-72. 

[55] Suura, S. R. Artificial Intelligence and 

Machine Learning in Genomic Medicine: 

Redefining the Future of Precision Diagnostics. 

[56] Kannan, S., & Seenu, A. (2024). 

Advancing Sustainability Goals with AI Neural 

Networks: A Study on Machine Learning 

Integration for Resource Optimization and 

Environmental Impact Reduction. management, 

32(2). 

[57] Motamary, S. (2022). Enabling Zero-

Touch Operations in Telecom: The Convergence 

of Agentic AI and Advanced DevOps for 

OSS/BSS Ecosystems. Kurdish Studies. 

https://doi.org/10.53555/ks.v10i2.3833 

[58] Singireddy, S. (2024). Predictive 

Modeling for Auto Insurance Risk Assessment 

Using Machine Learning Algorithms. European 

Advanced Journal for Emerging Technologies 

(EAJET)-p-ISSN 3050-9734 en e-ISSN 3050-

9742, 1(1). 

[59] Mashetty, S. (2024). The role of US 

patents and trademarks in advancing mortgage 

financing technologies. European Advanced 

Journal for Science & Engineering (EAJSE)-p-

ISSN 3050-9696 en e-ISSN 3050-970X, 1(1). 

[60] Yellanki, S. K. (2024). Leveraging Deep 

Learning and Neural Networks for Real-Time 

Crop Monitoring in Smart Agricultural Systems. 

American Data Science Journal for Advanced 

Computations (ADSJAC) ISSN: 3067-4166, 1(1). 

[61] Challa, S. R. (2024). Behavioral Finance 

in Financial Advisory Services: Analyzing 

Investor DecisionMaking and Risk Management 

in Wealth Accumulation. Available at SSRN 

5135949. 

[62] Paleti, S. (2023). Data-First Finance: 

Architecting Scalable Data Engineering Pipelines 

for AI-Powered Risk Intelligence in Banking. 

Available at SSRN 5221847. 

[63] Pamisetty, V., Dodda, A., Singireddy, 

J., & Challa, K. (2022). Optimizing Digital 

Finance and Regulatory Systems Through 

Intelligent Automation, Secure Data 

Architectures, and Advanced Analytical 

Technologies. Jeevani and Challa, Kishore, 

Optimizing Digital Finance and Regulatory 

Systems Through Intelligent Automation, Secure 

Data Architectures, and Advanced Analytical 

Technologies (December 10, 2022). 

[64] Komaragiri, V. B., Edward, A., & 

Surabhi, S. N. R. D. Enhancing Ethernet Log 

Interpretation And Visualization. 

[65] Kannan, S., Annapareddy, V. N., Gadi, 

A. L., Kommaragiri, V. B., & Koppolu, H. K. R. 

(2023). AI-Driven Optimization of Renewable 

Energy Systems: Enhancing Grid Efficiency and 

Smart Mobility Through 5G and 6G Network 

Integration. Available at SSRN 5205158.  

https://doi.org/10.53555/ks.v10i2.3833


 MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

 ISSN: 1053-7899  
 Vol. 34  Issue 2, July-Dec  2024, Pages: 1249-1271 

 

 
https://mswmanagementj.com/ 

 1293 

[66] Kommaragiri, V. B., Preethish Nanan, 

B., Annapareddy, V. N., Gadi, A. L., & Kalisetty, 

S. (2022). Emerging Technologies in Smart 

Computing, Sustainable Energy, and Next-

Generation Mobility: Enhancing Digital 

Infrastructure, Secure Networks, and Intelligent 

Manufacturing. Venkata Narasareddy and Gadi, 

Anil Lokesh and Kalisetty, Srinivas. 

[67] Pamisetty, V. (2022). Transforming 

Fiscal Impact Analysis with AI, Big Data, and 

Cloud Computing: A Framework for Modern 

Public Sector Finance. Big Data, and Cloud 

Computing: A Framework for Modern Public 

Sector Finance (November 30, 2022). 

[68] Paleti, S. (2023). Trust Layers: AI-

Augmented Multi-Layer Risk Compliance 

Engines for Next-Gen Banking Infrastructure. 

Available at SSRN 5221895. 

[69] Rao Challa, S. (2023). Revolutionizing 

Wealth Management: The Role Of AI, Machine 

Learning, And Big Data In Personalized Financial 

Services. Educational Administration: Theory and 

Practice. 

https://doi.org/10.53555/kuey.v29i4.9966 

[70] Machine Learning Applications in 

Retail Price Optimization: Balancing Profitability 

with Customer Engagement. (2024). MSW 

Management Journal, 34(2), 1132-1144. 

[71] Someshwar Mashetty. (2024). Research 

insights into the intersection of mortgage 

analytics, community investment, and affordable 

housing policy. Journal of Computational 

Analysis and Applications (JoCAAA), 33(08), 

3377–3393. Retrieved from 

https://www.eudoxuspress.com/index.php/pub/art

icle/view/2496 

[72] Lakkarasu, P., Kaulwar, P. K., Dodda, 

A., Singireddy, S., & Burugulla, J. K. R. (2023). 

Innovative Computational Frameworks for Secure 

Financial Ecosystems: Integrating Intelligent 

Automation, Risk Analytics, and Digital 

Infrastructure. International Journal of Finance 

(IJFIN)-ABDC Journal Quality List, 36(6), 334-

371. 

[72] Implementing Infrastructure-as-Code 

for Telecom Networks: Challenges and Best 

Practices for Scalable Service Orchestration. 

(2021). International Journal of Engineering and 

Computer Science, 10(12), 25631-25650. 

https://doi.org/10.18535/ijecs.v10i12.4671 

[73] Kannan, S. The Convergence of AI, 

Machine Learning, and Neural Networks in 

Precision Agriculture: Generative AI as a Catalyst 

for Future Food Systems. 

[74] Suura, S. R. (2024). Agentic artificial 

intelligence systems for dynamic health 

management and real-time genomic data analysis. 

European Journal of Analytics and Artificial 

Intelligence (EJAAI) p-ISSN 3050-9556 en e-

ISSN 3050-9564, 1(1). 

[75] Meda, R. (2022). Integrating IoT and 

Big Data Analytics for Smart Paint Manufacturing 

Facilities. Kurdish Studies. 

https://doi.org/10.53555/ks.v10i2.3842 

[76] Nandan, B. P., & Chitta, S. (2022). 

Advanced Optical Proximity Correction (OPC) 

Techniques in Computational Lithography: 

Addressing the Challenges of Pattern Fidelity and 

Edge Placement Error. Global Journal of Medical 

Case Reports, 2(1), 58-75. 

[77] Lakkarasu, P. (2023). Designing Cloud-

Native AI Infrastructure: A Framework for High-

Performance, Fault-Tolerant, and Compliant 

Machine Learning Pipelines. Journal for ReAttach 

Therapy and Developmental Diversities. 

https://doi.org/10.53555/jrtdd.v6i10s(2).3566 

[78] Kaulwar, P. K. (2022). Securing The 

Neural Ledger: Deep Learning Approaches For 

Fraud Detection And Data Integrity In Tax 

Advisory Systems. Migration Letters, 19, 1987-

2008. 

[79] Pandiri, L., Paleti, S., Kaulwar, P. K., 

Malempati, M., & Singireddy, J. (2023). 

Transforming Financial And Insurance 

Ecosystems Through Intelligent Automation, 

Secure Digital Infrastructure, And Advanced Risk 

MaRecharla, M., & Chitta, S. (2022). Cloud-

Based Data Integration and Machine Learning 

Applications in Biopharmaceutical Supply Chain 



 MSW MANAGEMENT -Multidisciplinary, Scientific Work and Management Journal  

 ISSN: 1053-7899  
 Vol. 34  Issue 2, July-Dec  2024, Pages: 1249-1271 

 

 
https://mswmanagementj.com/ 

 1294 

Optimization.nagement Strategies. Educational 

Administration: Theory and Practice, 29 (4), 

4777–4793. 

[80] Pandiri, L., Paleti, S., Kaulwar, P. K., 

Malempati, M., & Singireddy, J. (2023). 

Transforming Financial And Insurance 

Ecosystems Through Intelligent Automation, 

Secure Digital Infrastructure, And Advanced Risk 

Management Strategies. Educational 

Administration: Theory and Practice, 29 (4), 

4777–4793. 

[81] Challa, K. (2023). Optimizing Financial 

Forecasting Using Cloud Based Machine Learning 

Models. Journal for ReAttach Therapy and 

Developmental Diversities. 

https://doi.org/10.53555/jrtdd.v6i10s(2).3565 

[82] Chava, K. (2020). Machine Learning in 

Modern Healthcare: Leveraging Big Data for 

Early Disease Detection and Patient Monitoring. 

International Journal of Science and Research 

(IJSR), 9(12), 1899–1910. 

https://doi.org/10.21275/sr201212164722 

[83] Kalisetty, S., & Singireddy, J. (2023). 

Optimizing Tax Preparation and Filing Services: 

A Comparative Study of Traditional Methods and 

AI Augmented Tax Compliance Frameworks. 

Available at SSRN 5206185. 

[84] Sriram, H. K. (2022). Integrating 

generative AI into financial reporting systems for 

automated insights and decision support. 

Available at SSRN 5232395. 

[85] Koppolu, H. K. R. Deep Learning and 

Agentic AI for Automated Payment Fraud 

Detection: Enhancing Merchant Services Through 

Predictive Intelligence. 

[86] Sheelam, G. K. (2023). Adaptive AI 

Workflows for Edge-to-Cloud Processing in 

Decentralized Mobile Infrastructure. Journal for 

Reattach Therapy and Development Diversities. 

https://doi.org/10.53555/jrtdd.v6i10s(2).3570ugh 

Predictive Intelligence. 

[87] End-to-End Traceability and Defect 

Prediction in Automotive Production Using 

Blockchain and Machine Learning. (2022). 

International Journal of Engineering and 

Computer Science, 11(12), 25711-25732. 

https://doi.org/10.18535/ijecs.v11i12.4746 

[88] Chakilam, C. (2022). Integrating 

Machine Learning and Big Data Analytics to 

Transform Patient Outcomes in Chronic Disease 

Management. Journal of Survey in Fisheries 

Sciences. https://doi.org/10.53555/sfs.v9i3.3568 

[89] Pamisetty, A. (2024). Leveraging Big 

Data Engineering for Predictive Analytics in 

Wholesale Product Logistics. Available at SSRN 

5231473. 

[90] Gadi, A. L. (2022). Connected Financial 

Services in the Automotive Industry: AI-Powered 

Risk Assessment and Fraud Prevention. Journal of 

International Crisis and Risk Communication 

Research, 11-28. 

[91] Dodda, A. (2023). AI Governance and 

Security in Fintech: Ensuring Trust in Generative 

and Agentic AI Systems. American Advanced 

Journal for Emerging Disciplinaries (AAJED) 

ISSN: 3067-4190, 1(1). 

[92] Pamisetty, A. Optimizing National Food 

Service Supply Chains through Big Data 

Engineering and Cloud-Native Infrastructure. 

[93] Challa, K. (2022). The Future of 

Cashless Economies Through Big Data Analytics 

in Payment Systems. International Journal of 

Scientific Research and Modern Technology, 60–

70. https://doi.org/10.38124/ijsrmt.v1i12.467 

[94] Pamisetty, A. (2023). Cloud-Driven 

Transformation Of Banking Supply Chain 

Analytics Using Big Data Frameworks. Available 

at SSRN 5237927. 

 


