

A comparative evaluation of weight loss in grains of *Vigna aconitifolia* caused by *Callosobruchus chinensis* Linn. when treated with different plant extracts

Anuradha Swami* & Meera Srivastava *Laboratory of Entomology Post Graduate Department of Zoology, Govt. Dungar College, Bikaner 334001 Rajasthan, India

Abstract

Pulses are amongst the rich sources of protein and play a very significant role in the diet of common men but unfortunately they suffer an extensive damage during the storage especially due to insect infestation. The pulse beetle, *Callosobruchus chinensis* Linn. (Coleoptera: Bruchidae), is a notorious pest that causes serious major damage to stored pulses, resulting in economic losses for farmers and the food industry. The losses caused are both, quantitative as well as qualitative. The various hazards linked with presently employed synthetic pesticides, such as residual effects, pest resurgence, prevalent environmental and ecological hazards, insect pest resistance, and farmer economy, have led us to the use of some alternates to manage insect pests that are environmentally friendly, biodegradable, economical, and equally effective, and also causing no harm to the non-target species. One such strategy is to employ phytochemicals, which are natural plant-derived compounds with insecticidal properties. The present work was therefore undertaken to screen certain plant formulations to test their efficacy against the bruchid raised on grains of *Vigna aconitifolia* and to study their potency as grain protectant against the bruchid.

The plants selected for the study were *Azadirachta indica* (Meliaceae, *Prosopis juliflora* (Fabaceae) and *Leptadenia pyrotechnica* (Apocynaceae). The plant parts taken included bark, leaves and fruit (*A. indica*); bark, leaves and fruits (*P.juliflora*) and stem (*L. pyrotechnica*). Different formulations were employed in the form of aqueous extract, ethanol extract, petroleum ether extract and a novel Triton X-100 extract at various dose concentrations viz., 1%, 2.5%, 5% and 10%. Overall, no weight loss in grains was noted in sets treated with novel Triton X-100 extract and ethanol extract of 5 and 10% concentrations of stem of *L. pyrotechnica*

Introduction

Cereals, pulses, vegetables, fruits are all cultivated to meet the need of food. One of the major challenges man has been facing since its origin is provisioning of food and the biggest threat are the insects which compete with him. Many species of insects have been documented to damage stored commodities, resulting a loss of about 10–20% (Esther et al., 2014), these include nearly 600 species of beetle and 70 species of moths (Rajendran & Sriranjini, 2008). Insect pests infesting stored grains include *Helicoverpa spp., A. ipsilon, S. exigua, Chromatomyia horticola, Acyrthosiphon pisum, Helicoverpa armigera, Spodoptera litura, Callosobruchus chinensis, Callosobruchus maculatus, C.* analis (Yadav & Patel, 2015a, 2015b; Kaushik, 2014; Chakravarty et al. 2016; Kumar, 2013). The losses caused are both, quantitative as well as qualitative.

Pulses are amongst the rich sources of protein and play a very significant role in the diet of common men but unfortunately they suffer an extensive damage during the storage especially due to insect infestation. India has been the major producer of pulses in the world though its share in both area and pulse production, from 1961 to 2019, has marginally declined from 37% to 35% in area, from 32% to 26% in production (Bhat *et al.*, 2022).

During last few decades, synthetic organic insecticides have been used as major and successful mechanism for managing and saving the crop from the insect attack. But unfortunately they result in serious health and environmental hazards. The various hazards linked with presently employed synthetic pesticides, such as residual effects, pest resurgence, prevalent environmental and ecological hazards, insect pest resistance, and farmer economy, have led us to the use of some alternates to manage insect pests that are environmentally friendly, biodegradable, economical, and equally effective, and also causing no harm to the non-target species. One such strategy is to employ phytochemicals, which are natural plant-derived compounds with insecticidal properties. During the past few decades the focus has been in the development of novel phytochemical formulations for the management of pests, including the pulse beetle.

There are around 2,500 species from 235 plant groups that are beneficial in pest control worldwide. Several studies have found that botanical pesticidal constituents are made up of a variety of isolated secondary metabolites that have behavioral and physiological effects on agriculturally important pests and diseases (repellence, oviposition, feeding deterrence, acute

toxicity, developmental disruption, and growth suppression). Botanical insecticides are suggested to biodegrade in easy manner and ecologically safe against pest to prevent from further damage or loss of stored products (Wink, 1993). The plant based chemicals which include the essential oils, flavonoids, alkaloids, glycosides, Fatty acids and esters have different characteristics affecting the various physiological aspects of the insects in different ways based on the insect species. They could act as toxicants, feeding deterrents and antifeedants, repellents, sterilants and growth retardants (Rajashekar *et al.*, 2012).

The pulse beetle, *Callosobruchus chinensis* Linn. (Coleoptera: Bruchidae), is a notorious pest that causes serious major damage to stored pulses, resulting in economic losses for farmers and the food industry. According to reports by Gbaye *et al.* (2011), *Callosobruchus* spp. damages pulses up to 100% in storage. On an average, the bruchid results in 5-10 % losses in temperate countries while in tropical countries the per cent loss has been found to be 20-30% (Kiradoo & Srivastava, 2010). The insect causes qualitative as well as quantitative loss by deteriorating the quality of seed by denaturing and decreasing the solubility of proteins. The damage is caused by both grubs and adults, the grubs eat away the endosperm and only the thin outer covering of seed coat is left behind, thus rendering the grains not only unfit for consumption but also for the used as seed. The female cements the eggs on to the surface of the healthy grains. The larvae (grubs) burrow in to the seed and they complete entire development comprising of 4 instars and the pupal stage and finally mature adults emerge out leaving a holed grain behind *C. chinensis* is a cosmopolitan pest of stored pulses causing substantial losses to legumes and pulses (Hill, 1990). The entire life cycle by the pest is spent within the host grain, eating its endospermic part from within resulting in holed grains and their weight loss.

The present work was therefore undertaken to screen certain plant formulations to test their efficacy against the bruchid pest *Callosobruchus chinensis* Linn. (Coleoptera: Bruchidae) raised on grains of *Vigna aconitifolia* and to study their potency as grain protectant.

A. The plants selected for the study were:

- (i) Azadirachta indica (Meliaceae)
- (ii) Prosopis juliflora (Fabaceae)
- (iii) Leptadenia pyrotechnica (Apocynaceae)

- B. The plant parts taken were:
 - (i) Bark, leaves and fruit (A. indica)
 - (ii) Bark, leaves and fruits (*P.juliflora*)
 - (iii) Stem (L. pyrotechnica)
- C. Different formulations were employed in the form of:
 - (i) Aqueous extract
 - (ii) Ethanol extract
 - (iii) Petroleum ether extract
 - (iv) A novel Triton X-100 extract
- D. Various dose concentrations applied were:
 - (i) 1%
 - (ii) 2.5%
 - (iii) 5%
 - (iv) 10%
- E. The aspect studied was:
- (i) Weight loss in grains (expressed in per cent)

Material and method

The present study was carried out against stored grain pest *Callosobruchus chinensis* Linn. (Coleoptera: Bruchidae) commonly also known as pulse beetle (bruchid) and its pure line culture was raised on moth bean *Vigna aconitifolia* L. grains. The host grains for raising of the culture were purchased from the local market, were cleaned and further exposed to a temperature of 60°C for 4 hours in an incubator to remove any infestation, if present.

The bruchid shows a clear cut dimorphism. The male and female insect can be easily identified. A single pair of the adult beetle was released on the host grains placed in a glass beaker, covered and tightly tied with a muslin cloth. The beakers were placed in a BOD incubator which was set and maintained at a temperature of $28\pm2^{\circ}$ C and RH of 70% for rearing a pure line culture.

The select plants were collected from in and around Bikaner city which is situated between $27^{\circ}11' \& 20^{\circ} 03'$ North latitude and $71^{\circ}54'\& 74^{\circ}12'$ East longitude. For the present study, different plant parts used were bark, leaves and fruits of *A. indica* and *P. juliflora* and stem of *L. pyrotechnica*. These parts were separated and washed with GDW and then dried in shade for about 25 days. Different plant parts were ground in electric grinder and placed separately, up till further use, in air tight glass containers.

Different parts as follows: namely bark, leaves and fruits of *A. indica* and *P. juliflora* and stem of *L. pyrotechnica* were used separately to prepare different extracts.

Preparation of aqueous extract

Initially, 10 g of dried and ground plant material (bark of *A.indica*, leaf of *A. indica*, fruit of *A. indica*, bark of *P. juliflora*, leaf of *P. juliflora*, fruit of *P. juliflora* and stem of *L. pyrotechnica*) was taken in a thimble. The thimble with weighed plant material was then placed in a soxhlet extraction unit with 100ml distilled water and distilled. This extract was collected and made to a fix volume of 10ml which was 100% concentrated worked as stock solution. Further dilutions of 1, 2.5, 5 and 10 concentrations were further prepared by dilutions using GDW.

Preparation of ethanol extract

Initially, 10 g of dried and ground plant material (bark of *A.indica*, leaf of *A. indica*, fruit of *A. indica*, bark of *P. juliflora*, leaf of *P. juliflora*, fruit of *P. juliflora* and stem of *L. pyrotechnica*) was taken in a thimble. The thimble with weighed plant material was then placed in a soxhlet extraction unit with ethanol (Assay 99.50%) and distilled. This extract was collected and made to a fix volume of 10ml which was 100% concentrated worked as stock solution. Further dilutions of 1, 2.5, 5 and 10 concentrations were further prepared by dilutions using ethanol to avoid evaporation loss and concomitant alteration in concentrations, the ethanol extracts were prepared fresh at the time of application.

Preparation of petroleum ether extract

The same procedure as for ethanol extract was followed except for in this extract preparation, ethanol was replaced by solvent petroleum ether (Assay 99.0%).

Preparation of novel Triton X-100 extract

Initial solvent was prepared by dissolving 1ml of Triton X-100 (Assay 99.0%) which acted as surfactant in 500ml of GDW. This was taken as a solvent and further, the same procedure was followed as carried out for other extracts using soxhlet.

Experimental protocol followed

For the present study, as required for comparison, normal, control and experimental sets were taken, each with ten replicas. In all these sets, 10g host grains were taken in a beaker and 10 pairs of freshly emerged adults of the pest insect *C. chinensis* were released in each set covered with muslin cloth tied with rubber bands.

Sets treated with 1 ml of aqueous extracts, ethanol extracts, petroleum ether extracts and Triton X-100 extract (1ml Triton X-100 as surfactant + 500ml GDW) of different plant parts namely bark, leaves and fruits (*A. indica* and *P. juliflora*) and stem (*L. pyrotechnica*) and concentrations (1%, 2.5%, 5% and 10%) were kept. Besides, the normal and control sets were kept for comparisons.

The recording of observations

Initially, 10g of host moth bean grains was taken in a beaker and into which 10 pairs of adult pest beetles were released. The difference between the initial weight and final weight of grains, after the emergence of progeny of insects was assessed and weight loss of grains was calculated in terms of biomass:

Percent weight loss = Iw - Fw / 5 * 100

Where,

Iw = initial weight (10g);

Fw = Final weight

The values in all ten replicas in Control, Normal and Experimental sets for each aspect studied were noted and averaged and expressed as per cent weight loss in grains.

Statistical analysis

Statistical analysis was done employing analysis of variance (ANOVA) using SPSS Software version 2021 (Duncan 1955 test). For this, the data obtained was subjected to analysis of variance (ANOVA) and critical difference at 1% and 5% level of significance was worked out.

Result

Table 1a shows the main ANOVA. The mean weight loss (%) in grains of *Vigna aconitifolia* infested by the beetle *C. chinensis* under different treatments of *A. indica, P. juliflora* and *L. pyrotechnica* has been presented in Table 1b.

Tables 1c to 1p and Figs. 1 to 7 show the comparison of effect different formulations on the aspect of weight loss in grains.

Of the three plants screened, the extracts of *L. pyrotechnica* were found to be most effective as far as the weight loss in grains was concerned (Table 1c).

Among plant parts, stem part was noted to significantly (p<0.01) affect the weight loss in grains by the pulse beetle (Table 1d).

Further, the novel Triton X-100 extract was found to be superior over other solvents as it significantly (p<0.01) reduced the weight loss of grains (Table 1e).

The extracts of 10% concentration were noted to result in significant (p<0.01) reduction in weight loss of grains of *V. aconitifolia* as compared to rest of the concentrations employed (Table 1f).

Overall, no weight loss in grains was noted in sets treated with novel Triton X-100 extract and ethanol extract of 5 and 10% concentrations of stem of *L. pyrotechnica* (Table 1b).

Discussion

Overall, no weight loss in grains was noted in sets treated with novel Triton X-100 extract and ethanol extract of 5 and 10% concentrations of stem of *L. pyrotechnica*.

Of the three plants screened, the extracts of *L. pyrotechnica* were found to be most effective as far as the weight loss in grains was concerned. Govindan *et al.* (2023) observed no seed weight loss when *P.nigrum* formulations were employed, and similar observations were made by Islam

et al. (2013). Significant weight loss in grains was also observed by the treatments of *A. indica, Abutilon indicum, Tephrosia pupurea, Acalypa indica, Sesbania grandiflora* and *Cocinia indica and P.nigrum* (Rathod *et al.*, 2019; Govindan et al., 2023). *A.indica* treatments were noted to reduce weight loss in seeds of black gram by Niranjana & Karunakaran (2019), while, Saranya *et al.* (2019) also recorded similar findings by the use of A.calamus on cow pea seeds. Ehimemen & Salisu (2020) found extracts of *Hyptis suaveolens, Alstonia boonei* and *Tephrosia vogelii* to protect the stored cow pea seeds from the infestation of *C. maculatus.* When *V. unguiculata* treated with *M. arvensis* and *O. sanctum* as compared to control, Kamakshi *et al.* (2000) found that seed weight loss was minimum. These reports by various earlier workers support the present findings.

Among plant parts, stem part was noted to significantly affect the weight loss in grains by the pulse beetle. Extracts of different plant parts effect the weight loss in grains differently has been suggested by earlier workers from time to time. These include the works of Ghose *et al.* (1981), who documented that A. indica seed kernel powder to result in minimum damage of 4.23% caused by C. chinensis to the grains of C. arietinum as compared to 31.72% in control; the dry leaf powder of *M. spicata* was effective against *C. analis* on green gram was found by George & Patel (1992); Ofuya (1986), observed dry chilly pepper fruits, onion scale leaves and wood ash to result in least per cent seed damage caused by C. maculatus; minimum infestation of cowpea seeds by C. maculatus, when treated with dried neem fruit and ginger root powder was documented by Echendu et al. (1988); Chiranjeevi (1991), observed cow dung ash to be most effective followed by sweetflag rhizome powder, neem seed powder and neem leaf powder in reducing weight loss of green gram infested with bruchid; Miah et al. (1993), documented minimum seed damage when treated with V. negundo leaf powder. The seeds can be effectively protected from the infestation by C. chinensis has been found by Pandey & Singh (1995), when treated with dried powder of neem leaves, while Juneja & Patel (1994) observed no damage to grains by C. analis, when treated green gram grains with seed powder of black pepper, custard apple, leaves of mint and peel of orange. All these reports therefore are in conformation with the present study. Earlier Mishra et al. (1992) found neem seed powder and custard apple seed powder to be most effective against wheat infected with S. oryzae result in reduced weight loss, while, similar effect by the treatments of L. camara were noted by Prasad et al. (1998). Okonkwo & Okoye (1992) suggested that the treatments of leaves of *R. communis* could be

effective against *C. chinensis* for more than three months, while, mung seed could be effectively protected for at least hundred days with treatments of powder of *Annona* was observed by Pandey & Verma (1977). Neem bark powder was documented to be effective against adult *C. chinensis* resulting in minimum infestation of chickpea in storage has been suggested by Pandey & Singh (1997).

The novel Triton X-100 extract was found to be superior over other solvents as it significantly reduced the weight loss of grains. Aqueous and ether extracts were found to be more effective in reducing the weight loss (Mann, 1997). Ghei (2001) also noted reduced weight loss of grains infested with bruchid, when treated with aqueous extracts, while, Gupta (2004) observed ether extract and powder suspension to be superior rest of the formulations in preventing seed damage caused by *C. chinensis*. Reddy & Reddy (1987) found benzene extract to provide best protection against the pulse beetle. All these studies corroborate the present results.

The extracts of 10% concentration were noted to result in significant reduction in weight loss of grains of V. aconitifolia as compared to rest of the concentrations employed. Niber (1994) found that 10% concentration of leaves and roots of *Datura alba* result in reduced weight loss of grains of wheat and maize against S. oryzae. Dry leaf powder of M. spicata at 10% was effective against C. analis on green gram was found by George & Patel (1992). Treatments of M. arvensis and O. sanctum with 5 and 10% concentrations resulted in minimum seed weight loss as compared to control was documented by Kamakshi et al. (2000). Shivanna et al. (1994) found that leaf powder of tulsi, M. viridis at vaious doses of 0.5, 1.5 and 2.5 g/ 50 g gave maximum protection against C. chinensis. Jood et al. (1996) suggested that the efficacy of pudina powders and neem oil in sorghum grains to be effective against larvae of T. granarium. Paniker & Vijaylakshmi (1998) observed 10% turmeric powder to be effective resulting in maximum reduction in weight loss caused by S. oryzae. Dose concentration to be directly proportional with the weight loss has earlier been suggested by various workers (Srivastava & Mann, 1998a; Ghei, 2001; Gupta, 2004; Kiradoo, 2009). Minimum weight loss of grains by the insect pest was noted by Kareem et al. (1988) when treated with 3% neem seed kernal extract. When increase the amount of E. balsamifera from 0.5-2.0g resulted in reducing sorghum grain damage from 23 to 6% found by Suleiman et al. (2012) while, Suleiman & Suleiman (2014) observed increase in the amount of E. balsamifera plant powder to result in reduction in cowpea seed damage. Oil and powder of leaves of *M. spicata* in stored maize at concentrations 1 and 2% (w/w) as grain

protectant against *T. granarium* was suggested by Jood *et al.* (1993) and groundnut and coconut oils at 0.5% and sesame, cotton, palm and neem oil at 0.25% to be effective against *C. chinensis* in reducing percentage of damaged grains was reported by Sujatha & Punnaiah (1985) and thusare in conformation with the present findings.

Weight loss indicates the quantitative loss to the stored grain due to insect feeding, showing a direct relationship between insect population and biomass of grains. This seems to be true during the present study also, wherein various plant formulations employed resulted in reduced weight loss of grains.

It could therefore be concluded that, plants selected for the study viz., *Azadirachta indica* (Meliaceae), *Prosopis juliflora* (Fabaceae), *Leptadenia pyrotechnica* (Apocynaceae) do possess chemicals, which are toxic to insects and therefore have a potential to be used especially against the pest *C. chinensis*. Although, the three select plants, their parts, the type of extract and their concentrations showed varied degree of effect on weight loss in grains, the 10% novel Triton X-100 extract of stem of *L. pyrotechnica* was found to be most effective. The difference in efficacy may be attributed to either in the structural difference of the chemical compounds as suggested by Onyilagha *et al.* (2004), or their concentrations and solubility in different solvents. The further lies in identifying the actual toxic component, going for field trails and using it for pest management programs.

Overall, it could be suggested that adding of surfactant could prove to be a preferred formulation as observed during the present study during which the novel 10% Triton X-100 extracts of stem of *Leptadenia pyrotechnica* were observed to be most effective against the bruchid, *C. chinensis*.

References

- Bhat, Shripad, K., S., Aditya , Kumari, Binita, Acharya, Kumar, Kamlesh and Ramadas, Sendhil 2022. Pulses production, trade and policy imperatives: A global perspective. *Academic Press.* pp. 639-656.
- Chakravarty, S., Agnihotri, M. and Kumar, L. 2016. Diversity of insect fauna associated with pigeonpea and their succession in relation to crop phenology at Pantnagar, Uttarakhand. *J. Exp. Zool.* 19 (1): 1327-1332.

- Chiranjeevi, C. H. 1991. Efficacy of some indigenous plant materials and ashes on the percentage of damaged grains, percentage of protection and viability of green gram seeds infested by pulse beetle *Callosobruchus chinensis* (L.). *Bull. Grain Tech.*, 29 (2): 84-88.
- Echendu, T. N. C, Njoku, B. O., Oti, E., Odurukwe, S, O. and Ene, L. S. O. (eds.) 1988. Preliminary investigations into the use of ginger, neem and cashew nutshell liquid (CNSL) to reduce damage caused to stored cowpeas by *Callosobruchus maculatus*. *Proc. of the First Nat Ginger Workshop*, Umudike. Nigeria., pp. 124-128.
- Ehimemen, H. E. & Salisu, N. 2020. Bio-efficacy of some plants ethanolic extracts against cowpea weevil (*Callosobruchus maculatus* Fabricius) infestation of stored cowpea seeds. *Asian J. Biotech*, 12 (1): 16-21.
- Esther, M., Sharon, M., Abirami, C. V. K. and Alagusundaram, K. 2014. Grain storage management in India. *J. Postharvest Technol*, 2: 12–14.
- Gbaye, Olajire, A., Graham, J. and Holloway 2011. Varietal effects of cowpea, Vigna unguiculata, on tolerance to malathion in Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Stored Products Research, 47 (4): 365-371.
- George, V. & Patel, J.R. 1992. Mint Mentha spicata a promising botanical protectant for green gram against pulse beetle *Callosobruchus analis*. *Indian J. plant protection*, 20: 66 69.
- Ghei, Meenakshi 2001. Screening of certain leguminous plants for their insecticidal efficacy against pulse beetle *Callosobruchus chinensis* Linn. (Coleoptera: Bruchidae). Ph. D, Thesis, M.D. S. University, Ajmer (India), p. 146.
- Ghose, S. K.. Verma. G. D. and Lall, B. S. 1981. Pesticidal efficacy of some indigenous plants products against pulse beetle *Callosobruchus chinensis* Linn. (Bruchidae: Coleoptera). *Bulletin of Grain Tech.*, 19 (2): 96-99.
- Govindan, K., Geethanjali, S., Douressamy, S. and Brundha, G. 2023. Effect of various plant powders on pulse beetle, *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae) and seed weight loss in stored black gram. *Legume Research*, 46 (10): 1385-1391.
- Gupta, Lalita 2004. Management of pulse beetle *Callosobruchus chinensis* employing extracts of some solanaceous plants. Ph.D. Thesis, MDS University, Ajmer (India) pp.185.

Hill, D.S. 1990. Pests of stored products and their control. CRC press, Inc. P., 274.

- Islam, Haque, Kazi, Shahanara, Ahmed, Mondal, and Dash, Chandra 2013. Evaluation of some spices powder as grain protectant against pulse beetle, *Callosobruchus Chinensis* (L.). *Universal Journal of Plant Science*, 1 (4): 132-136.
- Jood S., Kapoor, A.C. and Singh, R. 1996. Evaluation of some plant products against *T. granarium* everts in sorghum and their effects on nutritional composition and organoleptic characteristics. *J. Stored Prod. Res.*, 32(4): 345 352.
- Jood, S., Kapoor, A. C. and Singh, R. 1993. Evaluation of some plant products against *Trogoderma granarium* Everts, in stored maize and their effect of nutritional composition and organoleptic characteristics of Kernels. *J. Agri. and Food Chem.*, 4 (10): 1644-1648.
- Juneja, R. P. & Patel, J. R. 1994. Botanical materials as protectant of green gram, Vigna radiata (L.) Wilczek against pulse beetle, Callosobruchus analis Fabricius. Gujarat Agricultural University Research Journal, 20: 84-87.
- Kamakstii, B., Rabaiah Ibrahim, S., Raja, N. and Ignachimuthu, S. 2000. Control of pulse beetle *Callosobruchus maculatus* using edible plant leaf extract. *Uttar Pradesh J. Zool.*, 20 (2): 143-146.
- Kareem, A. A., Saxena, R. C. and Palanginan, E. L. 1988. Effect of neem (*Azadirachia indica*) seed bitters (NSB) and neem seed kernel extract (NSKE) on pests of mungbean following rice. *Int. Rice Res. News letter*, 13 (6): 41-42.
- Kaushik, A.M. 2014. Studies on the comparative bioefficacy of various insecticides against the major insect pest infesting cowpea (*Vigna unguiculata* L.) at Pantnagar, M.Sc. thesis, Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Uttarakhand.
- Kiradoo, M. M. & Srivastava, Meera 2010. A comparative study on the efficacy of two lamiaceae plants on egg-laying performance by the pulse beetle Callosobruchus chinensis Linn. (Coleoptera: Bruchidae). Journal of Biopesticides, 3: 590-595.
- Kiradoo, M. M. 2009. A comparative study on efficacy of certain Lamiaceae plants against pulse beetle Callosobruchus chinensis (L.) (Coleoptera: Bruchidae). Ph.D. Thesis. University of Bikaner.

- Kumar, G. J. 2013. Monitoring of insect pest populations of chickpea (*Cicer arietinum* L.),M.Sc. thesis, Acharya N. G. Ranga Agricultural University, Rajendranagar, Hyderabad.
- Mann, Amandeep, Kaur 1997. Evaluation of pesticidal efficacy of certain desert plants against some stored grain pests. Ph.D. Thesis, M. D. S. University, Ajmer, India, pp. 197.
- Miah, M. R.U., Ellas, M., Torofdar, G. S., Islam, B. W., Sardar. M. A. and Karim, M. R. 1993. Evaluation of local plant materials against the pulse beetle (*Callosobruchus chinensis* Linn.) on chickpea. *Bangladesh J. Zool.*, 21 (2): 151-153.
- Mishra, B. K., Mishra, P. R. and Mahaptra, H. K. 1992. Studies on some plant produced mixtures against *Sitophilus oryzae* (L.) infesting wheat seeds. *Ind. J. Plant Prot.*, 20 (2): 178-182.
- Niber, B. T. 1994. The ability of powders and slurries from ten plant species to protect stored grain from attack of *Prostephanus truncatus* Horn. (Coleoptera: Bostrichidae). J. Stor. Prod. Res., 30 (4): 297-301.
- Niranjana, R. F. & Karunakaran, S. 2019. Evaluation of botanical extracts against Callosobruchus maculatus F. (Coleoptera:chrysomelidae) on different host grains. J.Sc. EUSL., 10 (1): 1-14.
- Ofuya, T. I. 1986. Use of wood-ash, dry chilli pepper fruits and onion scale leaves for reducing *Callosobruchus maculatus* (Fabr.) damage in cowpea seeds during storage. *J. Agric. Sci.*, 107 (2): 467-468.
- Okonkwo, E. U. & Okoye, W. I. 1992. The control of *Callosobruchus maculatus* (F.) in stored cowpea with dried ground *Ricinus communis* (L.) leaves in Nigeria. *Tropical*
- Onyilagha, J. C, Lazorko, J., Gruber, M.Y., Soroka, J. J. and Eriandson, M. A. 2004. Effect flavonoid preference and development of the crucifer pest. *Journal of Chemical Ecology*, 30 : 109-124.
- Pandey, G. P. & Verma, B. K. 1977. Annona (Custard apple) seed powder as a protectant of Mung, against pulse beetle, Callosobruchus maculatus Fab. Ind. J. Agric. Sci., 51 (12): 910-912.

- Pandey, N K. & Singh, S. C. 1995. Effect of neem leaf powder on survival and mortality of pulse beetle *Callosobruchus chinensis* (L.) infesting black grain. *Uttar Pradesh J. Zool.*, 15(3): 162-164.
- Pandey, N. K. & Singh. S. C. 1997. Effect of neem bark powder on infestation of pulse beetle *Callosobruchus chinensis* in stored chickpea. *Ind. J. Ent*, 59 (2): 161-163.
- Paniker, Aji., C. & Vijayalakshmi, V. R. 1998. A study on the weight loss caused by *Sitophilus oryzae* in stored food grains and its population growth and control using plant products. *Proc. Nat Sem. Ent in 21st Cent.*, Udaipur, p. 182.
- Prasad, Rameshwar, Pal, Rajeev Kumar, Katiyar, R. R. and Mathur, Y. K. 1998. Use of indigenous plant extracts as grain protectant against *Sitophilus oryzae* on wheat in storage. *Proc. Nat. Sem. Ent. in 21st Cent.*, Udaipur. p. 181.
- Rajashekar, Y. & Bakthavatsalam, Nandagopal and Shivanandappa, T. 2012. Botanicals as Grain Protectants. *Psyche.*, 1-13.
- Rajendran, Somiahnadar & Sriranjini, V. 2008. Corrigendum to "Plant products as fumigants for stored-product insect control" *Journal of Stored Products Research*, 44: 126–135
- Rathod, L., Sasane, A. R., Kawre, P. R., Chaware, G. G. and Rathod, P. K. 2019. Effect of botanicals on pulse beetle and per cent seed germination of stored green gram. *Journal of Pharmacognosy and Phytochemistry*, 8 (3): 2428-2430.
- Reddy, M. U. & Reddy, G. S. 1987. Effectiveness of selected plant materials as protectants against insect infestation and nutrient composition during storage of green gram (*Vigna radiata*). Bull. Grain Tech., 25 (1): 48-57.
- Saranya, M., Nelson, S. J., Paramasivam, M. and Mahalingam, C. A. 2019. Evaluation of different solvent extracts of sweet flag rhizome, *Acorus calamus* (L.) on pulse beetle, *Callosobruchus maculatus* (F.). *Indian J. Agric. Res.*, 53(4): 373-382.
- Shivanna, S., Lingappa, S. and Patu, B. V. 1994. Effectiveness of related plant materials as protectants against pulse beetle, *Callosobruchus chinensis* (Linn.) during storage of red gram. *Kamataka J. Agri. Sci.*, 73 : 283-290.

- Srivastava, Meera & Mann, Amandeep Kaur 1998a. Screening of pesticidal efficacy of plant, Peganum harmala against pulse beetle Callosobruchus chinensis. Proc. Nat. Sem. Ent. in 21st Cent., Udaipur, p. 173.
- Sujatha, A. & Punnaiah, K. C. 1985. Effect of coating stored seed of green gram with vegetable oils on the development of pulse beetle. *Ind. J. Agric.* Sci., 55 (7): 475-477.
- Suleiman, M. & Suleiman, H. Y. 2014. Control of Callosobruchus maculatus (F.) [Coleoptera: Bruchidae] using leaf powders of Euphorbia balsamifera L. and Lawsonia inermis L. International Journal of Science, Environment and Technology, 3 (1): 100-109.
- Suleiman, M., Ibrahim, N. D. and Majeed, Q. 2012. Control oi Sitophilus zeamais (Motsch) on sorghum using some leaf powders. International Journal of Agriculture and Forestry, 2(1): 53-57
- Wink, M. 1993. Production and application of phytochemicals from an agricultural perspective. In: Van Beek TA, Breteler H. editors. *Phytochemistry and Agriculture*. Oxford: Claredon Press. 171- 213.
- Yadav, S. K. & Patel, S. 2015a. Monitoring of insect-pest complex on black gram, Vigna mungo (Linn.) at Pantnagar. Journal of Entomological Research, 39 (4): 337-340.
- Yadav, S. K. & Patel, S. 2015b. Insect pest complex on *Pisum sativum* L. and their natural enemies at Pantnagar. *Journal of Plant Development Sciences*, 7 (11): 839-841.

Table. 1a. ANOVA for weight loss in grains showing different interactions and level of significance

Dependent Variable					
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	465104.728 ^a	167	2785.058	2940.543	0.000
Intercept	4242534.804	1	4242534.804	4479387.604	0.000
Plant	1387.141	2	693.571	732.291	0.000
Extracts	2847.981	3	949.327	1002.326	0.000
Concentrations	410283.964	5	82056.793	86637.870	0.000
Plant parts	11.986	2	5.993	6.327	0.002
Plants * Extracts	400.126	6	66.688	70.411	0.000
Plants * Concentrations	648.945	10	64.894	68.517	0.000
Plants * Plant parts	375.880	2	187.940	198.432	0.000
Extracts * Concentrations	1696.612	15	113.107	119.422	0.000
Extracts * Plant parts	117.809	6	19.635	20.731	0.000
Concentrations * Plant parts	101.855	10	10.186	10.754	0.000
Plants * Extracts * Concentrations	301.920	30	10.064	10.626	0.000
Plants * Extracts * Plant parts	369.266	6	61.544	64.980	0.000
Plants * Concentrations * Plant parts	94.263	10	9.426	9.953	0.000
Extracts * Concentrations * Plant parts	184.640	30	6.155	6.498	0.000
Plants * Extracts * Concentrations * Plant parts	315.219	30	10.507	11.094	0.000
Error	636.467	672	0.947		
Total	5180972.250	840			
Corrected Total	465741.195	839			
a. R Squared = .999 (Adjusted R Squared = .998)					

Table. 1b. Mean weight loss in grains infested with C. chinensis under treatments of different extracts of various plant parts of select three plants

			Leptadenia pyrotechnica	Prosopis juliflora	Azadirachta indica	Overall Mean
Extracts	Concentrations	Plant parts	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Aqueous extract	Normal		93.34±0.441	91.98±0.494	90.78±0.252	92.03±0.389
	Control		89.46±0.458	89.47±0.717	88.46±0.091	89.13±0.408
	1%	Stem (Bark)	20.12±0.361	22.94±0.337	23.12±0.354	22.06±0.22
		Leaf	-	24.66±0.262	24.64±0.463	24.65±0.709
		Fruit	-	25.34±0.189	24.59±0.297	24.96±0.349
		Total	20.12±0.361	24.31±0.531	24.11±0.273	22.84±0.263
	2.5%	Stem (Bark) (Bark)	18.14±0.43	21.14±0.27	21.20±0.354	20.16±0.209
		Leaf	-	24.4±0.534	25.74±0.445	25.07±0.794
		Fruit	-	25.92±0.124	23.64±0.463	24.78±0.311
		Total	18.14±0.43	23.33±0.429	23.32±0.333	21.59±0.255
	5%	Stem (Bark) (Bark)	17.22±0.717	20.38±0.24	20.23±0.545	19.27±0.302
		Leaf	-	23.23±0.679	22.8±0.13	23.01±0.569
		Fruit	-	23.1±0.239	23.28±0.416	23.19±0.228
		Total	17.22±0.717	22.23±0.283	21.66±0.272	20.37±0.217
	10%	Stem (Bark) (Bark)	12.42±0.567	19.04±0.214	18.28±0.275	16.58±0.313
		Leaf	-	20.22±0.482	19.42±0.34	19.82 ± 0.308
		Fruit	-	21.08±0.124	20.44±0.216	20.76±0.159
		Total	12.42±0.567	20.04±0.214	19.38±0.19	17.28 ± 0.194
Ethanol extract	Normal		93.34±0.441	91.98±0.494	90.78±0.252	92.03±0.389
	Control		89.46±0.458	87.46±0.256	87.46±0.456	88.12±0.39
	1%	Stem (Bark)	14.48±0.139	25.8±0.158	28.88±0.93	23.05±1.354
		Leaf	-	26.95±0.443	24.38±0.373	25.66±0.289

		Fruit	-	28.58±0.626	28.06±1.031	28.32±0.812
		Total	14.48±0.139	27.11±0.292	27.10±0.597	22.89±0.736
	2.5%	Stem (Bark)	12.96±0.178	27.58±0.229	24.14±0.489	21.56±1.259
		Leaf	-	30.16±0.391	28.32±0.124	29.54±0.362
		Fruit	-	39.3±0.466	27.7±0.93	33.5±0.882
		Total	12.96±0.178	32.34±0.35	26.72±0.779	24.00±0.666
	5%	Stem (Bark)	0±0	25.52±0.107	21±0.354	15.50±0.153
		Leaf	-	29.58±0.521	23.66±0.196	26.62±0.553
		Fruit	-	25.54±0.674	27.08 ± 0.208	26.31±0.827
		Total	0±0	26.88±0.574	23.91±0.94	16.93±0.504
	10%	Stem (Bark)	0±0	12.62±0.67	15.36±0.121	9.32±0.263
		Leaf	-	16.28±0.442	12.94±0.211	14.61±0.603
		Fruit	-	18.88±0.575	18.94±0.314	18.91±0.596
		Total	0±0	15.92±0.437	15.74±0.793	21.16±0.41
Petroleum ether extract	Normal		93.34±0.441	91.98±0.494	90.78±0.252	92.03±0.389
	Control		87.46±0.458	87.46±0.458	87.46 ± 0.458	87.46±0.458
	1%	Stem (Bark)	18.86±0.309	30.42±0.139	27.1±0.714	25.46±0.41
		Leaf	-	32.46±0.186	36.14±0.334	34.3±0.284
		Fruit	-	34.16±0.331	39.04±0.432	36.6±1.502
		Total	18.86±0.309	32.34±0.926	34.09±0.425	28.43±0.519
	2.5%	Stem (Bark)	16.94±0.77	28.7±0.288	26.28±0.317	23.97±0.571
		Leaf	-	30.28±0.185	32.12±0.412	31.2±0.288
		Fruit	-	32.48±0.343	34.22±0.503	33.35±1.485
		Total	16.94±0.77	30.48±0.773	30.87±0.5	26.09 ± 0.547
	5%	Stem (Bark)	13.22±0.351	25.26±0.225	24.72±0.416	21.0±0.821
		Leaf	-	32.42±0.576	30.24±0.411	31.33±0.493
		Fruit	-	30.02±0.519	33.64±0.38	31.83±0.828
		Total	13.22±0.351	29.23±0.451	29.53±0.43	23.66±0.459
	10%	Stem (Bark)	10.06±0.175	23.52±0.404	22.2±0.464	18.59±0.767

		Leaf	-	22.4±0.513	31.98±0.177	38.39±0.478
		Fruit	-	25.5±0.263	32.22±0.354	28.86±0.619
		Total	10.06±0.175	23.80±0.322	28.8±0.478	20.88±0.415
Triton X- 100 extract	Normal		93.34±0.441	91.98±0.494	90.78±0.252	92.03±0.389
	Control		88.46±0.458	88.46±0.421	88.46±0.420	88.46±0.433
	1%	Stem (Bark)	18.22±0.206	20.8±0.338	21.04±0.552	20.02±1.278
		Leaf	-	22.72±0.62	22.08 ± 0.762	22.4±0.608
		Fruit	-	21.98±0.166	28.3±0.539	25.14±0.926
		Total	18.22±0.206	21.59±0.322	23.80±0.466	21.20±0.676
	2.5%	Stem (Bark)	15.38±0.22	19.12±0.08	20.76±0.225	18.42±1.168
		Leaf	-	24.7±0.539	22.94±0.258	25.64±0.609
		Fruit	-	20.74±0.144	26.54±0.37	23.64±1.313
		Total	15.38±0.22	21.52±0.507	23.41±0.181	20.10±0.655
	5%	Stem (Bark)	0±0	16.26±0.172	19.78±0.25	12.01±0.140
		Leaf	-	22.94±0.25	20.12±0.116	10.76±0.133
		Fruit	-	19.86±0.35	24.44±0.157	22.15±0.947
		Total	0±0	19.68±0.774	21.44±0.121	13.70±0.328
	10%	Stem (Bark)	0±0	14.44±0.641	16.82±0.107	10.42±0.249
		Leaf	-	12.12±0.302	15.28±1.385	13.7±0.669
		Fruit	-	11.56±0.556	17.94±0.314	14.75±0.498
		Total	0±0	12.70±0.59	16.68±0.471	9.79±0.353

Table. 1c. Comparison of weight loss in grains infested with C. chinensis with respect to treatments of different plants

Dependent Variable		
Plants	Mean	Std. Error
Leptadenia pyrotechnica	45.79a	2.33
Prosopis juliflora	56.72c	1.187
Azardirachta indica	54.18b	1.258

Table. 1d. Comparison of weight loss in grains infested with C. chinensis with respect to treatments of different plant parts

Dependent Variable		
Plant parts	Mean	Std. Error
Stem (Bark)	40.44a	1.278
Leaf	45.57b	1.47
Fruit	50.52c	1.505

 Table. 1e. Comparison of weight loss in grains infested with C. chinensis with respect to treatments of different extracts

Dependent Variable		
Extracts	Mean	Std. Error
Aqueous extract	66.34d	1.486
Ethanol extract	46.45b	1.67
Petroleum ether extract	58.65c	1.594
Triton X 100 extract	40.24a	1.735

 Table. 1f. Comparison of weight loss in grains infested with C. chinensis with respect to treatments of different concentrations

Dependent Variable		
Concentrations	Mean	Std. Error
Normal	84.95f	0.118
Control	70.31e	0.084
1%	55.84d	0.394
2.5%	46.09c	0.382
5%	40.61b	0.342
10%	32.74a	0.262

Table. 1g. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Plants X Extracts

Plants	Leptadenia pyrotechnica	Prosopis juliflora	Azadirachta indica	Overall Mean
Extracts	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Aqueous extract	52.91±4.049	62.15±2.246	68.33±2.297	61.13±1.69
Ethanol extract	40.37±4.989	58.49±2.423	49.82±2.569	49.56±1.67
Petroleum ether extract	5831±4.621	60.01±2.353	65.39±2.451	61.23±1.594
Triton X-100 extract	42.57±5.014	55.19±2.493	45.19±2.728	47.65±1.735
Total	48.54±5.021	58.96±2.56	57.18±273	54.89±0.813

Table. 1h. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Plants X Concentrations

Plants	Leptadenia pyrotechnica	Prosopis juliflora	Azadirachta indica	Overall Mean
Concentrations	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Normal	85.34±0.202	85.34±0.202	85.34±0.202	85.34±0.202
Control	80.46±0.21	80.46±0.21	80.46±0.21	80.46±0.21
1%	58.86±1.464	60.73±0.384	58.26±0.505	59.28±0.394
2.5%	55.36±1.253	57.73±0.366	57.03±0.538	56.70±0.382
5%	45.61±1.029	50.66±0.362	48.23±0.485	48.16±0.342
10%	40.12±0.643	48.56±0.258	42.28±0.423	43.65±0.262
Total	60.95±2.33	63.41±1.187	61.93±1.258	62.13±0.813

Table. 1i. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Plants X Plant parts

Plants	Leptadenia pyrotechnica	Prosopis juliflora	Azadirachta indica	Overall Mean
Plant parts	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Stem (Bark)	42.79±2.33	50.93±2.085	48.6±2.215	47.44±1.278
Leaf	-	66.84±2.056	64.29±2.121	65.56±1.474
Fruit	-	68.34±2.041	62.66±2.216	65.5±1.505
Total	42.79±2.33	62.03±1.187	58.51±1.258	54.44±0.813

Table. 1j. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Extracts X Concentrations

	Aqueous extract	Ethanol extract	Petroleum ether extract	Triton X-100 extract	Overall Mean
Concentrations	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Normal	89.16±0.317	89.16±0.317	89.16±0.317	89.16±0.317	89.44±0.317
Control	77.31±0.171	75.31±0.171	74.31±0.171	70.31±0.171	74.31±0.084
1%	58.42±0.263	48.02±0.736	55.74±0.519	38.16±0.676	50.08±0.394
2.5%	55.89±0.255	45.74±0.666	52.57±0.547	36.17±0.655	47.59±0.382
5%	52.53±0.217	42.91±0.684	48.07±0.459	35.91±0.56	44.85±0.342
10%	48.7±0.194	40.86±0.5	42.38±0.415	30.02±0.447	40.49±0.262
Total	63.66±0.318	56.54±1.67	60.37±1.594	49.95±1.735	57.63±0.813

Table. 1k. Comparison of weight loss in grains infested with of *C. chinensis* with respect to treatments of Extracts X Plant parts

Extracts	Aqueous extract	Ethanol extract	Petroleum ether extract	Triton X-100 extract	Overall Mean
Plant parts	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Stem (Bark)	48.28±2.311	45.82±2.665	50.04±2.517	40.62±2.717	47.94±1.278
Leaf	52.45±2.735	48.32±2.936	55.05±2.911	45.45±3.225	50.11±1.474
Fruit	58.3±2.797	50.57±3.13	58.67±2.939	48.47±3.193	54.00±1.505
Total	53.01±1.486	48.23±1.67	54.58±1.594	44.84±1.735	50.16±0.813

Table. 11. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Concentrations X Plant parts

Plant parts	Normal	Control	1%	2.5%	5%	10%	Total
Stem (Bark)	95.7±0.129	90.79±0.117	50.29±0.705	48.2±0.64	45.28±0.592	38.4±0.447	61.24±1.278
Leaf	95.7±0.129	90.79±0.117	56.75±0.527	54.21±0.581	49.97±0.552	48.96±0.408	66.04±1.474
Fruit	95.7±0.129	90.79±0.117	60.75±0.623	58.32±0.69	52.25±0.569	49.54±0.452	62.85±1.505
Total	95.52±0.129	90.79±0.107	55.93±0.394	53.57±0.382	49.16±0.342	45.63±0.262	65.1±0.813

Table. 1m. Comparison of weight loss in grains infested with C. chinensis with respect to treatments of Plants X Extracts X Concentrations

		Aqueous extract	Ethanol extract	Petroleum ether extract	Triton X-100 extract	Overall Mean
Plants	Concentrations	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Leptadenia		90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.431
pyrotechnica	Normal					
	Control	89.46±0.458	86.46±0.458	86.46±0.458	82.46±0.458	85.75±0.21
	1%	66.88±0.361	55.48±0.139	58.86±0.309	45.22±0.206	56.61±1.464
	2.5%	62.14±0.43	52.96±0.178	58.94±0.77	40.38±0.22	53.60±1.253
	5%	58.22±0.717	0±0	50.22±0.351	0±0	27.11±0.267
	10%	50.42±0.567	0±0	48.06±0.175	0±0	24.62±0.185
	Total	69.52±4.049	57.48±4.989	65.92±4.621	53.01±5.014	60.16±2.33
Prosopis		90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.441
juliflora	Normal					
	Control	89.46±0.458	86.46±0.458	86.46±0.458	82.46±0.458	86.21±0.21
	1%	68.98±0.531	56.44±0.292	59.01±0.926	55.5±0.322	59.98±0.384
	2.5%	65.24±0.429	51.01±0.35	56.49±0.773	52.19±0.507	56.23±0.366
	5%	57.83±0.283	46.21±0.574	56.57±0.451	50.02±0.774	52.65±0.362
	10%	55.78±0.214	47.26±0.437	50.14±0.322	45.04±0.59	49.55±0.258
	Total	71.21±2.246	62.9±2.423	66.44±2.353	62.53±2.493	65.77±1.187
Azadirachta indica	Normal	90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.431
	Control	89.46±0.458	86.46±0.458	86.46±0.458	82.46±0.458	86.21±0.21
_	1%	63.71±0.273	54.44±0.597	60.42±2.46	55.47±0.466	58.51±0.505
	2.5%	62.46±0.333	52.05±0.779	58.11±0.5	50.41±0.181	55.75±0.538
	5%	55.01±0.272	50.58±0.94	55.87±0.43	46.45±0.121	51.97±0.485
	10%	52.05±0.19	50.08±0.793	52.06±0.478	46.01±0.471	50.05±0.423
	Total	68.70±2.297	63.85±2.569	67.07±2.451	61.65±2.728	65.38±1.258

Table. 1n. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Plants X Extracts X Plant parts

Extracts	Plant parts	Leptadenia pyrotechnica	Prosopis juliflora	Azadirachta indica	Overall Mean
Aqueous extract1.Stem55.91±4.049(Bark)		71.77±4.084	55.17±4.007	60.95±2.311	
	2.Leaf	-	72±3.698	68.9±4.093	70.45±2.735
	3.Fruit	-	72.66±4.01	62.94±3.969	67.8±2.797
	Total	55.91±4.049	72.14±2.246	62.33±2.297	63.46±1.486
Ethanol extract	1.Stem (Bark)	30.37±4.989	48.9±4.214	50.19±4.666	43.15±2.665
	2.Leaf	-	49.28±4.224	53.35±4.144	51.31±2.936
	3.Fruit	-	50.36±4.262	56.93±4.638	53.64±3.13
	Total	30.37±4.989	49.51±2.423	53.49±2.569	44.45±1.67
Petroleum ether extract	1.Stem (Bark)	45.31±4.621	53.46±4.283	50.35±4.285	49.70±2.517
	2.Leaf	-	54.88±4.168	55.21±4.131	55.04±2.911
	3.Fruit	-	58.65±3.862	56.61±4.449	57.63±2.939
	Total	45.31±4.621	55.66±2.353	54.05±2.451	51.67±1.594
Triton X-100 extract	1.Stem (Bark)	30.57±5.014	53.58±4.298	35.7±4.84	39.95±2.717
	2.Leaf	-	57.2±4.474	45.7±4.721	51.45±3.225
	3.Fruit	-	58.78±4.3	49.17±4.774	53.93±3.193
	Total	30.57±5.014	56.52±2.493	43.52±2.728	43.53±1.735

Table. 10. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of Plants X Concentrations X Plant parts

	Plants	Leptadenia pyrotechnica	Proopis juliflora	Azadirachta indica	Overall Mean
Concentrations	Plant parts	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
Normal	-	90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.431
Control	-	87.31±0.171	87.31±0.171	87.31±0.171	87.31±0.161
1%	1.Stem (Bark)	42.86±1.464	58.24±0.461	48.76±1.05	63.28±0.705
	2.Leaf	-	56.2±0.794	57.31±0.691	56.75±0.527
	3.Fruit	-	55.77±0.677	50.73±0.85	53.25±0.623
	Total	42.86±1.464	56.73±0.384	52.26±0.505	50.61±0.394
2.5%	1.Stem (Bark)	42.36±1.253	45±0.348	48.55±0.972	45.30±0.64
	2.Leaf	-	55.64±0.806	54.78±0.836	55.21±0.581
	3.Fruit	-	56.86±0.63	52.78±0.961	54.82±0.69
	Total	42.36±1.253	52.5±0.366	52.03±0.538	48.96±0.382
5%	1.Stem (Bark)	38.61±1.029	53.36±0.226	53.86±0.863	48.61±0.592
	2.Leaf	-	52.24±0.844	51.71±0.728	51.96±0.552
	3.Fruit	-	50.38±0.48	49.11±0.856	27.24±0.569
	Total	38.61±1.029	51.66±0.362	51.56±0.485	47.27±0.342
10%	1.Stem (Bark)	30.12±0.643	48.41±0.242	45.67±0.724	41.4±0.447
	2.Leaf	-	49.76±0.452	43.16±0.642	46.46±0.408
	3.Fruit	-	53.51±0.457	45.58±0.718	49.54±0.452
	Total	30.12±0.643	50.56±0.258	44.80±0.423	45.8±0.262

Table. 1p. Comparison of weight loss in grains infested with C. chinensis with respect to
treatments of Extracts X Concentrations X Plant parts

	Extracts	Aqueous extract	Ethanol extract	Petroleum ether extract	Triton X 100 extract	Overall Mean
Concentrations	Plant parts	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE	MEAN±SE
1.Normal		90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.441	90.02±0.441
2Control		87.31±0.171	87.31±0.171	87.31±0.171	87.31±0.171	87.31±0.171
1%	Stem (Bark)	66.27±0.22	55.72±1.354	59.13±0.41	54.02±1.278	58.78±0.705
	Leaf	64.5±0.709	58.66±0.289	57.8±0.284	55.9±0.608	59.21±0.527
	Fruit	64.42±0.349	57.32±0.812	55.6±1.502	55.64±0.926	58.24±0.623
	Total	65.06±0.263	57.23±0.736	57.1±0.519	55.18±0.676	58.64±0.394
2.5%	Stem (Bark)	60.85±0.209	38.32±1.259	45.22±0.571	42±1.168	46.59±0.64
	Leaf	62.57±0.794	45.24±0.362	57.7±0.288	36.32±0.609	50.45 ± 0.581
	Fruit	6228±0.311	49.5±0.882	56.85±1.485	48.64±1.313	54.41±0.69
	Total	61.9±0.255	44.35±0.666	53.25±0.547	42.32±0.655	50.45±0.382
5%	Stem (Bark)	55.85±0.302	30.17±1.304	45.07±0.821	30.01±1.118	40.27±0.592
	Leaf	53.4±0.569	41.12±0.553	52.23±0.493	40.03±0.133	46.69±0.552
	Fruit	57.19±0.228	46.81±0.827	51.33±0.828	45.65±0.947	50.24±0.569
	Total	55.48±0.217	39.36±0.684	49.54±0.459	38.56±0.56	42.73±0.342
10%	Stem (Bark)	46.25±0.313	30.99±0.871	45.26±0.767	30.09±0.91	38.17±0.447
	Leaf	48.82±0.308	39.61±0.603	43.19±0.478	38.2±0.669	42.45±0.408
	Fruit	50.76±0.159	42.41±0.596	45.25±0.619	40.75±0.498	44.79±0.452
	Total	48.61±0.194	37.67±0.5	44.56±0.415	36.34±0.447	41.79±0.262

Fig. 1. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of different plants.

Fig. 2. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of different plant parts.

MSW MANAGEMENT - Multidisciplinary, Scientific Work and Management Journal ISSN: 1053-7899 Vol. 33 Issue 2, December – 2023, Pages: 515-545

Fig. 3. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of different extracts.

Fig. 4. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of different concentrations.

Fig. 5. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of plants, extracts and concentrations of *Leptadenia pyrotechnica*.

Fig. 6. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of plants, extracts and concentrations of *Prosopis juliflora*.

Fig. 7. Comparison of weight loss in grains infested with *C. chinensis* with respect to treatments of plants, extracts and concentrations of *Azadirachta indica*.