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Abstract

This paper proposes MIRO (Mir6-Inspired Rhythmic Orbits), a new population-based metaheuristic inspired by Joan Mird’s visual
language: (i) constellation-like point fields, (ii) thin black linking lines, (iii) biomorphic deformations, and (iv) balance/equilibrium through
repeated refinement. These artistic principles are mapped into three cooperating search operators—Splatter, Line-Weaving, and
Equilibrium Balance—that jointly control exploration and exploitation. MIRO is evaluated on the convex test problem z = (x—3)"2 +
(y—2)"2 and five classical benchmark functions (Sphere, Rosenbrock, Rastrigin, Ackley, Griewank). A pure NumPy + Matplotlib
implementation is provided (no scikit-learn, no TensorFlow), producing colorful graphical outputs and reporting optimal (x» y)points.
Keywords: metaheuristic optimization; Mird; constellation search; biomorphic deformation; benchmark functions; population-based
optimization.
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1. Motivation and Artistic Inspiration
Mir6’s Constellations period is often described through dense fields of signs, dots, stars, and connecting filaments, where overall
harmony is achieved by iteratively adjusting local elements until a global balance emerges.
MIRO converts this idea into optimization:
e Dots (constellation points) — candidate solutions (population).
e Black lines — dynamic neighborhood links (graph edges) encouraging information flow.
e  Biomorphic shapes — nonlinear “soft warps” (bounded deformation) to escape local basins.
e Balance & composition — adaptive schedule from exploration to exploitation.
This mapping produces a search process that repeatedly spreads, connects, and rebalances the population, analogous to building a coherent
“composition”.[1-3]
2. Problem Definition
We minimize a function f(x)in a bounded domain x € [I,u] c R%.
Primary test:
e Quadratic: f(x,y) = (x — 3)? + (v — 2)?(global minimizer at (3 2)).
Benchmark set (standard in global optimization studies): Sphere, Rosenbrock, Rastrigin, Ackley, Griewank. [4-6]
3. The MIRO Algorithm
3.1 Population and Constellation Graph
Maintain Nsolutions X = {x;}I,. Build a constellation graph by connecting each point to its knearest neighbors (thin “black lines™).
Neighborhoods are periodically rebuilt to reflect the evolving geometry of the population.
3.2 Three Operators (Three “Colors™)
At iteration t, each agent generates three candidate moves; the best is selected:
1. Splatter (Exploration)
Random blotches expand coverage:
o xP=x,+a®)sONO1)
where s = u — land a(t)decreases over time.
2. Line-Weaving (Connectivity + Guidance)
Move along a randomly selected constellation edge plus a mild pull to global best:
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o X =%+ BO)(Xney — X)) + 0258(1) (8 — X))
3. Equilibrium Balance (Composition/Exploitation)
Move toward the centroid of elites with a bounded biomorphic warp:

o xP =x;+y(®)cE-x)+(1—y()€esOtanh (‘)’(-iz__;;)

Selection: evaluate f (xl.(l)), f (x§2)), f (xl@), pick the best candidate (and keep elitism).
MIRO on z=(x-3)"2+(y-2)~2 (colorful contour + best-path)
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Figure-1-MIRO-Quadratic Function Performance
4. Flowchart (MIRO)

Start: set N, iters, bounds, objective f{.) |

\Y

Initialize population X uniformly in bounds |
Evaluate fitness F; set global best g |

\Y

Build constellation graph (k-NN neighbors) |

\Y

Fort=1.T
Update a(t), B(®), v(t) |
For each agent i: |
Candidate 1: Splatter |
Candidate 2: Line-Weaving |
Candidate 3: Equilibrium Balance
Clip to bounds, evaluate 3 candidates
Select best candidate (elitist update) |
Update global best g
Periodically rebuild k-NN graph |
End

\"

Output: best solution g, best value f(g) |
Plot: contours + convergence + summary bars
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5. Pseudocode

MIRO(f, bounds [l,u], N, T, k):
X « Uniform(l,u) with N points
F — f(X)
g « argmin(F)
Adj « kNN_ graph(X,k)

fort=1.T:
T« t/(T-1)
o < 0.04%(1-7)+0.004
B < 0.60*(1-t)+0.15
v < 0.05+0.85%

Elite « best N/5 points of X
€ < mean(Elite)

for eachiin 1..N:
x1 « Xi + a*(u-I) © Normal(0,1)
n <« random neighbor from Adj[i]
X2 « Xi + B*(Xn - Xi) + 0.25B*(g - Xi)
warp « tanh((Xi - €)/(0.25*(u-I)))
X3 — Xi + 0.3y*(@ - Xi) + (1-y)*0.02*(u-I) O warp

clip x1,x2,x3 into [I,u]
choose xbest among {x1,x2,x3} with minimal (.)
if f(xbest) < f(Xi): Xi «— xbest

update g using best of X
if t mod 40 == 0: Adj «— kNN_graph(X,k)

return g, f(g)
6. Experiments
Using a 2D setting with typical bounds and MIRO parameters (e.g., N = 60, T = 800), MIRO converges to near-global optima on standard
tests (Sphere/Rastrigin/Ackley often reach machine-precision minima; Rosenbrock approaches (1- 1); Griewank approaches (0 0)even on
wide bounds). Benchmark definitions are consistent with common evaluation practice in global optimization. [7-12]
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Figure-2-MIRO Convergence
Python Code
PS:Python code has not been included in the article due to its large size, but it can be sent upon request.
OUTPUT OF THE PYTHON CODE
C:\Users\Lenovo\PycharmProjects\PythonProject17\.venv\Scripts\python.exe
C:\Users\Lenovo\AppData\Roaming\JetBrains\PyCharm2024.3\extensions\nnn.py

[Quadratic z=(x-3)"2+(y-2)"2]
Best value = 2.128566340393e-06
Best (x,y) = (2.9986845615, 2.0006310213)
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[Sphere]
Best value = 3.035325110508e-07
Best (x,y) = (-0.0005249967, -0.0001670657)

[Rosenbrock]
Best value = 9.443751153743¢-09
Best (x,y) = (0.9999034732, 0.9998080796)

[Rastrigin]
Best value = 4.744910566856¢-05
Best (x,y) = (-0.0004330452, 0.0002272451)

[Ackley]
Best value = 1.748106356598e-03
Best (x,y) = (0.0005946385, -0.0001549449)

[Griewank]
Best value = 8.505872288656¢-05
Best (x,y) = (0.0101482510, 0.0115772749)

Total runtime (all tests): 9.501 s[13-22]
Final Best Objective Values (MIRO)

1073 4

1074

1075 4

1076 5

Best fix) (log scale)

10—7 -

10-8 4

e N

el
2oy oy e

530\)“’& @sﬂ-‘é\“ pod®

Figure-3- Final Best Objective Values(MIRO)
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