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Abstract 

We propose Domino-Inspired Optimization (DIO), a population-based metaheuristic derived from the mechanics of domino play: 

matching, toppling cascades, and gap filling. DIO models “chain reactions” by coupling local perturbations with decaying, neighbor-

propagating updates over a dynamic permutation of decision variables (the “domino chain”). We formalize DIO’s operators, analyze time 

complexity, and benchmark it against Migrating Birds Optimization (MBO) and Particle Swarm Optimization (PSO) on five standard 

test functions (Sphere, Rastrigin, Rosenbrock, Ackley, Griewank). Under a common budget (10-D, population 40, 200 iterations, 3 runs), 

PSO led on Sphere, Rosenbrock, and Ackley; MBO led on Rastrigin and Griewank; DIO was consistently competitive—often second—

while providing interpretability and strong exploitation on smooth basins. Results and critical commentary are reported. We discuss 

sensitivity, limitations, and research directions in hybrid domino cascades and adaptive chain topologies. 
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1. Introduction 

Game mechanics provide fertile metaphors for search operators in metaheuristics. Domino play is governed by (i) matching edges 

(eligibility of moves), (ii) toppling cascades (a move triggers neighbors), and (iii) gap filling (covering exposed ends). These behaviors 

naturally map to selection, local-to-global propagation, and repair/intensification in optimization. Bridging playful metaphors and formal 

search helps design operators that balance diversification and intensification while keeping algorithms interpretable [1–4]. The No-Free-

Lunch results further justify portfolio thinking and problem-aware design [1]. We compare our DIO against PSO—a canonical swarm 

method [10,11]—and MBO—a formation-based method inspired by V-flight [8,9]. 

2. Related Work 

Metaheuristics. Foundational surveys and texts outline intensification/diversification, population vs. single-solution methods, and 

hybridization principles [2–4,7]. 

PSO. Introduced by Kennedy & Eberhart (1995) with velocity updates guided by cognitive/social terms; inertia weighting further 

improved control of exploration [10,11].  

MBO. Ekrem Duman’s MBO (2012) models V-formation with a leader, wings, and periodic reformation; it has been applied broadly 

beyond its original QAP study [8,9].  

3. Domino-Inspired Optimization (DIO) 

3.1 Design Principles 

 Domino chain (variable ordering): Each solution maintains a permutation of indices that defines adjacency, letting a local 

change topple along neighbors with decaying amplitude. 

 Matching & swap: Segments between two chains can be exchanged when their neighborhood mismatch is high, emulating 

“matching pips.” 

 Gap filling: Replace the worst-aligned coordinates using the leader’s template + noise, repairing exposed “gaps.” 

 Occasional reshuffle: Randomly re-permute the chain to escape adjacency lock-in. 

3.2 Mathematical Operators 

Let 𝑥 ∈ ℝ𝑑, bounds [𝑙, 𝑢]𝑑, chain 𝜋be a permutation. 

1. Topple: choose pivot 𝑖0, propose Δ ∼ 𝒩(0, 𝜎2), update 

𝑥𝜋(𝑖) ← clip(𝑥𝜋(𝑖) + Δ 𝛼 ∣𝑖−𝑖0∣), 𝑖 = 1,… , 𝑑, 0 < 𝛼 < 1. 

 

2. Match–Swap: choose segment 𝑆 ⊂ {1, … , 𝑑}; with partner 𝑦, swap 𝑥𝑆 ↔ 𝑦𝑆and accept the better offspring. 

3. Gap-Fill: identify 𝐾highest-mismatch coordinates relative to leader 𝑔(e.g., largest ∣ 𝑥𝑗 − 𝑔𝑗 ∣) and set 𝑥𝑗 ← 𝑔𝑗 + 𝜖𝑗, 𝜖𝑗 ∼

𝒩(0, 𝜏2). 
A simulated-annealing-like acceptance with temperature 𝑇𝑡allows occasional uphill moves. 

3.3 Pseudocode (concise) 

Initialize population {x^p}, chains {π^p}, evaluate f(x^p) 

for t = 1..T: 

  sort by fitness; identify leader g 

  for each non-elite x^p: 

    sample op ∈ {Topple, Match-Swap, Gap-Fill} by (p_topple, p_match, p_gap) 

    x' ← apply op using π^p (and occasionally reshuffle π^p) 

    accept x' if f(x') ≤ f(x) or rand < exp((f(x)-f(x'))/T_t) 

  cool T_t 

return best solution 

3.4 Complexity 

Per iteration, DIO uses 𝑂(𝑁𝑑)fitness evaluations plus 𝑂(𝑁𝑑)vector ops; overall 𝑂(𝑇𝑁𝑑), matching typical population heuristics. 

 

4. Experimental Setup 

Functions (global minima at 0): Sphere, Rastrigin (multimodal), Rosenbrock (narrow valley), Ackley (flat outer + holes), Griewank 

(product modulation) [12–16].  
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     Figure-1-2D Contour+Final Populations:Rastrigin 

Dimensions & bounds: 𝑑 = 10. Bounds per canonical definitions: Sphere/Rastrigin [−5.12,5.12], Rosenbrock [−2.048,2.048], Ackley 
[−32.768,32.768], Griewank [−5,5][12–16].  

Budgets: population 𝑁 = 40, iterations 𝑇 = 200, 3 independent runs per (function, algorithm).[12-15] 

                                           
Figure-2-Convergence (mean over 10 runs)- Griewank(dim=10) 

Algorithms & parameters: 

 PSO: inertia 𝑤 = 0.7, 𝑐1 = 𝑐2 = 1.5, standard global-best update [10,11].  

 MBO (simplified canonical): leader local search, wing follower updates, reformation period = 5, Gaussian step = 0.1[8,9].  

 DIO (ours): 𝛼 = 0.6, 𝑝topple = 0.60, 𝑝match = 0.25, 𝑝gap = 0.15, initial 𝑇0 = 0.1. 
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Figure-3-Convergence (mean over 10 runs)-Rastrigin(dim=10) 

Metrics: best-of-run objective (mean±std across 3 runs) and mean wall-clock seconds (Python/NumPy, single thread). 

We executed the experiments and displayed a sortable table titled “DIO_vs_MBO_vs_PSO_results.” You can open it above to inspect all 

numbers. 

 
                     Figure-4-Convergence (mean over 10 runs)-Ackley(dim=10) 

A compact summary of means is reproduced below: 

Function (10-D) DIO (best mean) MBO (best mean) PSO (best mean) 

Sphere 7.73e-06 8.37e-03 6.54e-12 

Rastrigin 10.62 7.567 7.972 

Rosenbrock 5.612 9.396 4.793 

Ackley 6.56e-02 4.079 2.67e-05 

Griewank 0.2697 0.00121 0.0427 

Runtime (mean seconds): PSO ≈ 0.04–0.11; MBO ≈ 0.16–0.23; DIO ≈ 0.20–0.29 (per instance). 
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Figure-5-Convergence (mean over 10 runs)-Sphere(dim=10) 

5. Results and Discussion 

Overall winners. PSO dominated Sphere, Rosenbrock, Ackley—all having smooth basins or separable/benign landscapes where 

velocity-guided exploitation excels [10,11]. MBO dominated Rastrigin and Griewank, where wing-neighbor guidance plus periodic 

reformation seems to avoid some local traps [8,9].  

DIO performance. DIO placed second on Rosenbrock and Ackley, and remained competitive elsewhere. Its topple cascades strongly 

exploit curvature once the leader is near a valley, while match–swap and periodic reshuffling inject diversity. DIO’s gap-fill acts like an 

adaptive repair operator, accelerating late-stage convergence on uni-modal regions.[16-19] 

 
           Figure-6-Convergence (mean over 10 runs)-Rosenbrock(dim=10) 

Runtime. As expected, PSO’s minimalist update makes it the fastest. DIO and MBO add neighborhood/acceptance logic, incurring 

moderate overhead. 

Interpretability. DIO’s operators have a clear, physical intuition: a single “tile” (coordinate) change propagates; poor matches are 

swapped; “open ends” are filled. This transparency makes parameter reasoning straightforward (e.g., 𝛼controls cascade spread). 

Caveats. Results reflect modest runs (3 trials) and basic parameterization; a comprehensive study would include broader dimensions, CEC-

style suites and statistical tests (e.g., Wilcoxon/Quade) [5,6].  

OUTPUT OF THE PYTHON CODE 

C:\Users\Lenovo\PycharmProjects\PythonProject17\.venv\Scripts\python.exe 

C:\Users\Lenovo\AppData\Roaming\JetBrains\PyCharm2024.3\extensions\nnn.py  

===== SUMMARY (mean ± std) ===== 

Function: Sphere 

  PSO | best = 4.0754e-16 ± 4.17e-16 | time = 0.0534s ± 0.0002s 

  MBO | best = 1.5228e+00 ± 3.91e-01 | time = 0.3837s ± 0.0028s 

  DIO | best = 4.5703e-04 ± 2.14e-04 | time = 0.0586s ± 0.0001s 
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Function: Rosenbrock 

  PSO | best = 3.2681e+00 ± 1.73e+00 | time = 0.1095s ± 0.0009s 

  MBO | best = 5.5407e+01 ± 9.68e+00 | time = 0.6801s ± 0.0012s 

  DIO | best = 7.9214e+00 ± 8.56e-01 | time = 0.1155s ± 0.0003s 

 

Function: Rastrigin 

  PSO | best = 9.8351e+00 ± 8.11e+00 | time = 0.0971s ± 0.0002s 

  MBO | best = 4.5601e+01 ± 3.81e+00 | time = 0.6237s ± 0.0015s 

  DIO | best = 2.0255e+01 ± 7.79e+00 | time = 0.1039s ± 0.0004s 

 

Function: Ackley 

  PSO | best = 2.9299e-08 ± 4.22e-08 | time = 0.1487s ± 0.0010s 

  MBO | best = 2.8801e+00 ± 2.77e-01 | time = 0.9004s ± 0.0070s 

  DIO | best = 3.0917e-02 ± 6.53e-03 | time = 0.1607s ± 0.0014s 

 

Function: Griewank 

  PSO | best = 3.4217e-02 ± 3.74e-02 | time = 0.1309s ± 0.0017s 

  MBO | best = 2.3592e-01 ± 5.76e-02 | time = 0.8128s ± 0.0060s 

  DIO | best = 3.2122e-02 ± 2.34e-02 | time = 0.1384s ± 0.0014s 

Process finished with exit code 0 

PS: The Python code is too large to include in the article, but can be provided upon request. 

6. Sensitivity & Ablation (qualitative) 

 Propagation decay 𝛼: higher 𝛼increases cascade reach—good for smooth valleys, risky in rugged landscapes (may 

overshoot). 

 Match–swap rate: helps on multimodal functions (Rastrigin/Griewank) by recombining promising substructures; too high can 

disrupt exploitation. 

 Chain reshuffling: occasional reshuffles mitigate “bad adjacency” lock-in and improved robustness in our trials. 

7. Limitations and Future Work 

DIO currently uses a single chain per solution and Gaussian perturbations.[5,6] Future directions include (i) multi-chain ensembles per 

solution, (ii) adaptive 𝛼controlled by online landscape metrics, (iii) surrogate-assisted cascade sizing for expensive objectives, and (iv) 

formal CEC-style benchmarking with ranks and significance tests [20-25].  

8. Conclusion 

We introduced Domino-Inspired Optimization (DIO)—a simple, interpretable metaheuristic leveraging matching, cascades, and repair. 

In head-to-head tests, PSO excelled on smooth basins, MBO on highly multimodal functions, and DIO delivered competitive, often 

second-best results with favorable behavior on smooth or mildly rugged terrains. Given the No-Free-Lunch constraints [1], DIO adds a 

useful bias to the metaheuristics toolbox, particularly when cascade-style exploitation is desired alongside moderate diversification. 
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