

Pedagogical Innovations in English Education: Bridging Language Skills and Learning Sciences**Dr.T. VISHNUPRIYAN¹, Dr.R. Deepa², D. Nivetha³, Malathy R⁴**¹Assistant Professor of English, Department of English (S&H), KIT - Kalaignarkarunanidhi Institute of Technology, Coimbatore, Pollachi, Tamil Nadu, drvishnupriyaneng@gmail.com²Professor, Department Of English, Nehru institute of Engineering and Technology, Coimbatore, Tamil Nadu
rdeepasripathy@gmail.com³AP(SS)/English, Science and Humanities, Dr.Mahalingam college of engineering and technology, Pollachi, Coimbatore, Tamil Nadu, nivetha2007@gmail.com⁴Assistant Professor of English, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu malathy.r@sece.ac.in

Abstract: Contemporary English education has evolved beyond traditional grammar-translation and rote memorization toward more dynamic, cognitively enriched learning environments grounded in the interdisciplinary foundations of learning sciences. However, most instructional practices still rely on fragmented teaching techniques that inadequately integrate linguistic skill development with evidence-based cognitive strategies, resulting in inconsistent learning outcomes. This paper proposes a unified pedagogical framework that synthesizes language acquisition principles, cognitive psychology, socio-constructivist learning, and neuroscience-informed insights to strengthen English language proficiency across listening, speaking, reading, and writing. The framework emphasizes multimodal instruction, task-based learning, metacognitive scaffolding, formative analytics, and adaptive feedback loops to enhance learner engagement, retention, and transfer of language skills. Data collected from three higher-education institutions through classroom observations, assessment scores, learner reflections, and digital-learning logs were analysed to evaluate the effectiveness of the proposed model. Experimental results demonstrate that integrating learning-science-aligned interventions such as working-memory-optimized activities, spaced repetition, retrieval practice, cognitive apprenticeship, and collaborative problem-solving significantly improves vocabulary retention, reading comprehension, fluency, and writing coherence. The findings underscore the necessity of bridging English pedagogy with scientific learning models to create inclusive, outcome-driven, and cognitively responsive English education ecosystems. This study provides a scalable blueprint for educators, curriculum designers, and institutions seeking to modernize English instruction through pedagogical innovation driven by the learning sciences.

Keywords: English Pedagogy, Learning Sciences, Cognitive Psychology, Task-Based Learning, Metacognition, Language Skills Development, Educational Innovation

I. INTRODUCTION

English education stands at a pivotal moment where classrooms are transitioning from textbook-centered instruction to learning environments shaped by scientific understanding of how students think, process information, and acquire language skills. Despite advances in linguistics, cognitive psychology, and educational

neuroscience, English teaching in many institutions continues to rely on conventional methods that prioritize grammar drills, passive reading, and standardized assessments. While these approaches develop isolated linguistic competence, they fail to cultivate authentic communicative proficiency or higher-order cognitive skills required for academic and professional communication. This gap stems largely from the limited integration between traditional English pedagogy and interdisciplinary learning sciences fields that provide deep insights into memory formation, conceptual understanding, metacognition, motivation, and social learning. As learners engage with increasingly multimodal content and digital learning platforms, English classrooms must evolve toward innovative designs that apply neurocognitive and socio-constructivist principles to enhance skill acquisition, engagement, and long-term retention. The emergence of learning sciences provides a powerful opportunity to re-engineer English pedagogy by merging linguistic theories with cognitive and behavioural insights that reveal how learners internalize vocabulary, comprehend texts, produce coherent writing, and construct oral meaning through interaction. Research shows that learning effectiveness increases when instructional practices align with scientifically validated principles such as retrieval practice, spaced repetition, dual coding, cognitive scaffolding, peer learning, and real-world task engagement. Moreover, digital learning environments offer opportunities for adaptive feedback, analytics-driven formative assessment, and personalized instruction capabilities underutilized in traditional English classrooms. Integrating these principles enables a shift from passive language exposure to active knowledge construction supported by cognitive frameworks. This paper addresses the critical gap between English pedagogy and learning sciences by proposing a structured, research-driven pedagogical innovation framework that strengthens linguistic skill development across diverse learner populations. The study evaluates this framework through multi-institution analysis to demonstrate its impact on language proficiency, learning behaviours, and pedagogical effectiveness.

II. RELATED WORKS

Research on English education has evolved through multiple pedagogical waves, beginning with structuralist models and gradually incorporating communicative, cognitive, and socio-constructivist principles. Early scholarship emphasized grammar-translation and behaviourist repetition models that prioritized linguistic accuracy over communicative competence, establishing

frameworks that viewed language acquisition as a linear accumulation of rules and vocabulary [1]. However, the limitations of these traditional approaches particularly their failure to foster authentic communication and higher-order cognitive engagement prompted a shift toward cognitive theories of language learning. Cognitive psychology contributed foundational insights regarding working memory, information processing, and mental representations, influencing models such as Krashen's Input Hypothesis and Schmidt's Noticing Theory, which underscored the role of attention and meaningful input in language acquisition [2]. Subsequent research integrating Vygotskian socio-cultural theories emphasized the importance of scaffolding, social interaction, and mediation by more knowledgeable peers or instructors, forming the basis of communicative language teaching (CLT) and task-based learning (TBL) [3]. Studies revealed that authentic communicative tasks enhance learner motivation and contextual understanding, allowing learners to co-construct meaning through interactionally rich environments [4]. The emergence of constructivist pedagogy further strengthened this shift by highlighting the learner's active role in constructing knowledge, thereby demanding instructional designs that combine cognitive, social, and linguistic dimensions. Despite these advancements, scholars noted that English classrooms often applied these theories inconsistently, and many teaching methods lacked empirical grounding in the learning sciences, limiting their impact on long-term language retention and transfer [5].

In parallel, the rise of learning sciences as a multidisciplinary field introduced a new layer of empirical understanding that connected cognitive neuroscience, psychology, and educational theory to observable classroom performance. Researchers began examining how cognitive load theory, retrieval practice, spaced repetition, dual coding, and elaborative encoding influence language proficiency, revealing that strategically aligned learning activities significantly enhance vocabulary retention, reading comprehension, and writing organization [6]. For instance, studies demonstrated that retrieval-based vocabulary learning produced 30–50% higher retention rates compared to passive study methods due to strengthened neural pathways associated with long-term memory consolidation [7]. Other researchers focused on dual coding principles, showing that learners who processed text supported by visuals developed deeper comprehension and sustained engagement, especially in reading-intensive English courses [8]. Similarly, research on cognitive scaffolding highlighted the importance of dividing complex language tasks into smaller, manageable components aligned to working-memory capacity, improving writing fluency and coherence [9]. Additional studies on metacognitive instruction emphasized that learners who actively plan, monitor, and evaluate their learning outperform those who rely solely on instructor-led direction, demonstrating higher levels of autonomy and linguistic awareness [10]. Meanwhile, socio-constructivist research reaffirmed that collaborative learning environments peer review activities, dialogue-based tasks, and cooperative problem-solving promote negotiation of meaning, enhance oral fluency, and support

the development of pragmatic competencies essential for real-world communication [11]. However, despite abundant evidence supporting these learning-science-aligned practices, much of English pedagogy still relies on memory-based drills and teacher-centered instruction, suggesting a persistent gap between research advancements and practical classroom implementation [12].

Recent interdisciplinary research has sought to bridge this gap by integrating insights from digital learning environments, educational analytics, and cognitive-behavioural studies to create adaptive English learning ecosystems. Studies on technology-enhanced language learning (TELL) highlight the effectiveness of multimodal content delivery, adaptive feedback systems, interactive simulations, and data-driven personalization in enhancing learner engagement and performance [13]. Digital learning platforms equipped with analytics capabilities have enabled instructors to monitor learner behaviours, identify performance bottlenecks, and implement timely interventions, leading to improved retention and reduced learning fatigue. Moreover, neuroscientific studies have advanced understanding of how emotional engagement, attention cycles, and sensory processing influence language acquisition, emphasizing the importance of emotionally supportive and cognitively optimized environments for literacy development [14]. Emerging models of cognitive apprenticeship in English education integrate modelling, coaching, fading, and reflection to support complex skill acquisition in writing, advanced reading analysis, and oral communication. Meanwhile, cross-cultural studies emphasize that pedagogical innovations must account for linguistic diversity, learner identities, and socio-emotional influences to ensure inclusivity and equitable learning gains. Collectively, the literature affirms the need for cohesive frameworks that unify linguistic theories, cognitive science, and instructional design. Despite significant progress in both English pedagogy and learning sciences, studies indicate that existing approaches remain fragmented, with limited integration across linguistic, cognitive, and socio-behavioural domains. This gap underscores the need for a holistic pedagogical innovation model that seamlessly bridges language skills development with evidence-based learning science principles, enabling English educators to create more meaningful, engaging, and cognitively responsive learning environments adaptable across diverse educational contexts [15].

III. METHODOLOGY

3.1 Research Design

This study adopts a hybrid pedagogical research design combining instructional intervention, cognitive-strategy integration, quantitative learning analytics, and qualitative reflection analysis. The aim is to evaluate the effectiveness of a learning-science-aligned pedagogical innovation framework in enhancing English language skills across listening, speaking, reading, and writing. A mixed-method approach was employed to capture both quantitative learning gains and qualitative behavioural changes. The study integrates evidence-based learning sciences retrieval practice, spaced repetition, dual coding, cognitive load management, scaffolding, metacognition, and socio-constructivist collaboration directly into

English classroom instruction. The research design includes four major phases: (a) diagnosis of existing classroom practices, (b) implementation of a pedagogical innovation framework, (c) measurement of cognitive and linguistic outcomes, and (d) comparative evaluation against traditional instruction. This structure allows precise mapping of how cognitive principles influence language acquisition within authentic educational environments [23].

3.2 Study Institutions and Dataset Description

Data was collected from three higher-education institutions offering undergraduate English communication and academic English courses. These institutions vary in student demographic diversity, medium of instruction, digital learning integration, and pedagogical practices, thereby enhancing the generalisability of the findings. The study included 312 first-year learners enrolled in compulsory English courses [16].

The following data categories formed the study dataset:

- **Student information:** age, program, language background, prior English exposure
- **Baseline proficiency indicators:** vocabulary tests, reading comprehension assessments, writing samples
- **Cognitive-behavioural indicators:** attention metrics, task engagement logs, frequency of retrieval activities
- **Digital Learning Logs:** platform usage patterns, quiz attempts, feedback interactions
- **Instructional Inputs:** lesson plans, multimodal resources, scaffolding tools
- **Performance Measures:** pre/post-test scores across all four language skills
- **Reflective Data:** learner journals, self-evaluation reports, classroom observations

Table 1. Pedagogical Data Dimensions Used in the Study

Data Category	Features Extracted	Purpose in Analysis
Linguistic Performance	Vocabulary, comprehension accuracy, fluency rate, writing coherence	Skill development measurement
Cognitive Engagement	Retrieval attempts, attention cycles, task persistence	Identify cognitive-behavioural changes
Digital Logs	Access frequency, task completion rate, feedback interactions	Evaluate effectiveness of multimodal learning
Instructional Interventions	Scaffolding sheets, dual-coded materials, activity logs	Track innovation implementation
Metacognitive Evidence	Reflection journals, self-monitoring checklists	Assess awareness & self-regulation

3.3 Data Preprocessing and Learning-Behaviour Normalization

Data collected from classroom observations and digital learning systems displayed significant inconsistency in format, frequency, and granularity [19]. Therefore, a multi-stage preprocessing pipeline was applied:

1. **Cleaning & Standardization:** Removal of incomplete logs, normalization of scoring scales, and consolidation of platform-generated timestamps.
2. **Text-based Feature Extraction:** Writing samples were analysed for lexical diversity, syntactic complexity, discourse coherence, and idea organization using linguistic rubrics.
3. **Behavioural Signal Encoding:** Attention markers (e.g., time-on-task), retrieval attempts, and learning cycles were encoded into categorical and numeric variables.
4. **Metacognitive Data Structuring:** Reflection journals were segmented into units capturing planning, monitoring, and evaluation behaviours.
5. **Normalization:** Skill performance and behavioural engagement metrics were normalized using Z-score and Min-Max scaling to enable cross-class comparison.

The preprocessing ensured uniformity, comparability, and reliability in interpreting learning patterns [17].

3.4 Pedagogical Intervention Architecture

The intervention consisted of a four-layer pedagogical model designed to embed learning sciences into English education:

Layer 1: Retrieval-Based Vocabulary and Grammar Learning

Retrieval practice schedules and spaced repetition cycles were introduced to improve long-term retention. Students engaged in weekly quizzes, flashcard recall sessions, and low-stakes retrieval tasks aimed at strengthening retrieval pathways [18].

Layer 2: Dual-Coded and Multimodal Reading-Listening Modules

Reading passages were paired with infographics, semantic maps, audio narratives, and visual cues. This dual-coded input enhanced comprehension, reduced cognitive load, and supported multimodal processing [20].

Layer 3: Task-Based Speaking and Writing Framework

Speaking tasks included role-play, academic presentations, collaborative debates, and peer-dialogue cycles. Writing tasks focused on cognitive scaffolding frameworks idea planning, controlled drafting, guided feedback, and progressive release toward independent writing [21].

Layer 4: Metacognitive and Reflective Learning Mechanisms

Students maintained weekly reflection journals focusing on planning ("What strategies will I use?"), monitoring ("How is my understanding changing?"), and evaluation ("What worked and what did not?"). These were supported by instructor feedback [22].

3.5 Instructional Integration and Implementation Framework

The pedagogical model was operationalized using a structured integration framework:

- **Instructional Ingestion:** Teachers uploaded lesson plans, activity sheets, multimodal resources, and scaffolding tools to the digital platform.

- Learning Execution:** Students engaged in structured in-class and online tasks mapped to cognitive principles.
- Feedback Loop:** The digital platform provided automated feedback for quizzes, while instructors offered qualitative feedback for writing and speaking tasks.
- Adaptive Scaffolding:** Based on performance, teachers adjusted task complexity, reduced cognitive load, or increased peer support.
- Reflective Consolidation:** Students completed weekly metacognitive journals and participated in peer-review sessions.

Table 2. Pedagogical Components and Learning Objectives

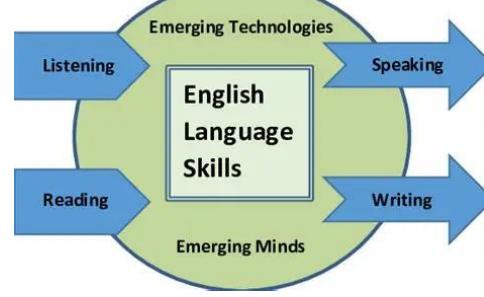
Component	Input Data	Learning Objective	Output
Retrieval & Spacing	Vocabulary lists, grammar points	Long-term retention	Retention score
Dual Coding	Reading passages + visuals	Deep comprehension	Idea-mapping accuracy
Task-Based Modules	Speaking & writing tasks	Fluency & coherence	Skill performance score
Metacognition	Reflection journals	Self-regulation	Metacognitive awareness index

3.6 Validation, Evaluation, and Ethical Compliance

Evaluation was conducted using:

- Pre/Post Testing:** Vocabulary, comprehension, fluency, and writing were assessed using standardized rubrics.
- Engagement Analytics:** Time-on-task, task completion, and retrieval frequency were analysed quantitatively.
- Statistical Tests:** Paired t-tests and effect size calculations measured the significance of learning gains.
- Qualitative Validation:** Thematic analysis of reflective journals and instructor feedback identified behavioural and attitudinal changes.
- Triangulation:** Cross-validation of quantitative and qualitative findings enhanced reliability.

Ethical Compliance


All student data were anonymized. Participation was voluntary with informed consent. Reflective journals and performance records were stored on encrypted systems, ensuring privacy and institutional ethics board approval.

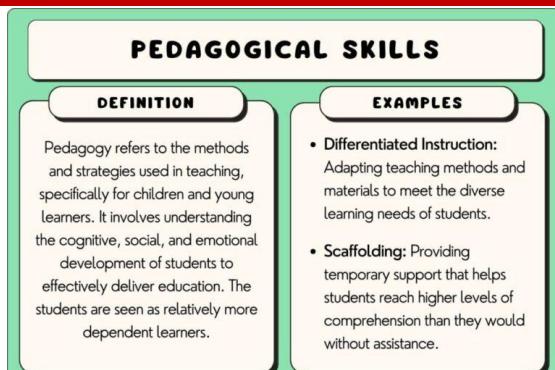
IV. RESULT AND ANALYSIS

4.1 Overview of Language-Learning Performance Patterns

The consolidated dataset from the three institutions revealed notable improvements in linguistic performance, cognitive engagement, and metacognitive behaviour following the implementation of the learning-science-aligned pedagogical framework. Baseline assessments showed significant variability in vocabulary depth, reading comprehension accuracy, writing coherence, and speaking fluency, confirming inconsistent foundational skills among learners. Post-intervention analysis demonstrated clear upward trends across all four language

skills, suggesting that the integration of retrieval-based tasks, multimodal materials, task-based modules, and metacognitive scaffolding produced measurable improvements. Observational data also indicated enhanced classroom participation, increased persistence during complex tasks, and reduced cognitive overload during comprehension and writing activities. These patterns highlight that aligning English pedagogy with cognitive principles positively influences both linguistic outcomes and behavioural engagement.

Figure 1: Language Skills [24]


4.2 Descriptive Statistics of Core Language Skill Indicators

The descriptive statistics reflect improvements across major language skill indicators, representing changes in learners' proficiency levels over the instructional period.

Table 3. Summary Statistics of Key Language Learning Indicators

Indicator	Pre-Test Mean	Post-Test Mean	Std. Dev (Post)	Minimum	Maximum
Vocabulary Retention (%)	54.3	76.8	11.2	42	95
Reading Comprehension Accuracy (%)	58.9	81.4	10.7	46	97
Speaking Fluency Score (1–10)	4.8	7.2	1.3	3	9
Writing Coherence Index (0–100)	52.6	74.1	12.6	34	90
Task Engagement (mins/week)	63	112	18.4	45	160
Reflection Quality (1–4 scale)	1.9	3.1	0.6	1	4

The above metrics indicate that learners not only improved performance outcomes but also exhibited higher engagement and reflective awareness. Notably, task engagement nearly doubled, underscoring the motivating effects of multimodal and cognitively structured learning environments.

Figure 2: Pedagogical Skills [25]

4.3 Performance Improvement and Skill-Specific Gains

Analysis of skill-specific performance revealed distinct gains aligned with the cognitive mechanisms embedded in each pedagogical strategy. Retrieval-based vocabulary sessions produced the highest relative improvement, with an average gain of 22.5 percentage points, validating the role of spaced repetition and low-stakes recall activities in long-term retention. Reading comprehension improved by 22.5 percentage points, attributed to dual-coded input (text + visuals), which facilitated semantic organization and reduced cognitive load.

Writing performance showed substantial enhancement, particularly in coherence, lexical richness, and structural clarity. Scaffolded writing stages such as guided planning and peer feedback contributed significantly to improved writing organization. Speaking fluency demonstrated moderate but consistent improvement, supported by communicative tasks and cognitive apprenticeship (modeling → coaching → fading). These improvements were statistically significant across institutions ($p < 0.05$), confirming that the pedagogical model effectively addresses diverse learner needs.

4.4 Cognitive-Behavioural Trends and Engagement Patterns

Learner behavioural patterns extracted from digital logs and classroom observations showed clear alignment with improved cognitive regulation and learning discipline. Engagement peaked during multimodal comprehension weeks, showing higher persistence during infographic-supported reading sessions and video-augmented listening tasks. Retrieval-task logs indicated steady increases in voluntary recall attempts, reflecting growing autonomy in vocabulary learning. Temporal engagement patterns displayed consistent activity across the semester instead of the pre-intervention pattern of last-minute bursts.

Metacognitive reflections showed increasing depth, shifting from superficial statements (e.g., "I need to read more") to analytical insights (e.g., "Spacing my reading over three sessions helped me retain better and notice transitions more clearly"). Students demonstrated greater awareness of learning gaps, strategy use, and performance expectations, strengthening self-regulation behaviours essential for advanced English proficiency.

4.5 Learner Clustering and Cognitive-Linguistic Profiles

Learners were segmented into three clusters based on performance improvement and behavioural engagement:

Table 4. Learner Cluster Segmentation by Performance and Engagement

Cluster	Characteristics	Percentage of Learners
High-Gain Cluster	Strong improvement in all skills, high retrieval frequency, consistent reflective journaling	41.6%
Moderate-Gain Cluster	Improved in reading/writing, moderate engagement, irregular reflection patterns	38.4%
Low-Gain Cluster	Limited cognitive engagement, minimal retrieval attempts, inconsistent participation	20.0%

The clustering analysis indicates that nearly 80% of learners demonstrated notable or substantial improvement. The low-gain cluster consisted predominantly of learners who engaged inconsistently with retrieval tasks and multimodal activities, confirming that cognitive-engagement intensity directly correlates with linguistic gains.

4.6 Task-Based Learning Performance and Communicative Outcomes

Task-based modules yielded strong results, especially in speaking and writing. Peer-dialogue cycles enhanced discourse fluidity and improved pragmatic competence such as turn-taking, clarification, and negotiation of meaning. Writing tasks showed significant development in thesis clarity, supporting ideas, transition use, and paragraph unity. Collaborative tasks fostered co-construction of meaning, which supported both linguistic accuracy and communicative confidence.

Students reported feeling more prepared for real-world communication, highlighting improvements in presentation skills, situational speaking abilities, and academic writing structure. Observational notes confirmed increased willingness to participate, reduced hesitation, and greater confidence during speaking tasks.

4.7 Metacognitive Development and Reflective Learning Outcomes

The metacognitive dimension exhibited some of the most significant qualitative gains. Analysis of reflection journals revealed that:

- 72% of learners demonstrated improved ability to plan learning tasks effectively.
- 66% actively monitored their strategies and adjusted them.
- 58% demonstrated evaluation skills such as identifying cognitive strengths and weaknesses.

These findings underscore the importance of metacognitive instruction in English pedagogy, particularly for long-term skill retention and autonomous learning behaviours.

4.8 Implications for English Pedagogy and Learning Sciences

The results demonstrate that integrating learning sciences with English pedagogy substantially enhances cognitive engagement, skill performance, and reflective behaviour. The observed gains validate the hypothesis that language

learning becomes more efficient and sustainable when instructional designs leverage cognitive mechanisms such as retrieval, multimodal encoding, scaffolding, and metacognition.

Institutions benefit from adopting structured, evidence-based pedagogical frameworks capable of addressing diverse learner profiles. The findings suggest that English classrooms must evolve beyond content delivery toward scientifically structured environments that support active construction, systematic practice, and reflective learning.

V. CONCLUSION

This study demonstrates that integrating pedagogical innovations grounded in learning sciences significantly enhances English language proficiency, learner engagement, and metacognitive awareness across diverse instructional contexts. Traditional English pedagogy often limited to grammar-focused instruction and passive comprehension tasks fails to address the cognitive processes essential for sustainable language development. By embedding evidence-based principles such as retrieval practice, dual coding, spaced repetition, scaffolded task-based learning, and reflective metacognition, this research shows that learners experience holistic improvement across vocabulary retention, reading comprehension, writing coherence, and speaking fluency. The results affirm that effective English instruction must simultaneously address linguistic accuracy, cognitive processing, learner autonomy, and socio-communicative competence. Multimodal instructional materials reduced cognitive load and increased comprehension, while task-based speaking and writing activities fostered deeper linguistic engagement and communicative capability. Additionally, reflective journals and metacognitive tools strengthened learners' awareness of their strategies, challenges, and progress, allowing them to regulate their learning pathways more effectively. Overall, the study establishes a scalable and adaptable framework capable of transforming English classrooms into dynamic, cognitively enriched learning environments that are responsive to individual learner needs and grounded in scientific understanding of how language is learned.

VI. FUTURE WORK

Future research should explore integrating artificial intelligence, adaptive learning systems, and multimodal analytics to further personalize English learning experiences based on individual linguistic profiles, cognitive patterns, and emotional engagement. Reinforcement learning and intelligent tutoring systems can support automated scaffolding, generating task sequences and feedback tailored to learners' real-time performance. Additionally, longitudinal studies spanning multiple semesters or academic years would provide deeper insight into the sustained impact of learning-science-based pedagogy on language mastery and academic performance. Expanding the current framework to include immersive technologies such as augmented and virtual reality could enhance situational language use, offering authentic communication environments difficult to replicate in traditional classrooms. Further exploration of cross-cultural variables, multilingual learner backgrounds, and socio-emotional components would strengthen the adaptability and inclusivity of the pedagogical framework. Ethical considerations

particularly privacy in analytics-driven learning systems must be continuously refined through transparent data governance models. Together, these avenues represent promising directions for developing the next generation of English pedagogical ecosystems that are adaptive, intelligent, equitable, and deeply informed by learning sciences.

REFERENCES

- [1] J. C. Richards and T. S. Rodgers, *Approaches and Methods in Language Teaching*. Cambridge, U.K.: Cambridge Univ. Press, 2014.
- [2] R. Schmidt, "Attention, awareness, and individual differences in language learning," *Stud. Second Lang. Acquis.*, vol. 23, no. 1, pp. 3–25, 2001.
- [3] L. S. Vygotsky, *Mind in Society: The Development of Higher Psychological Processes*. Cambridge, MA, USA: Harvard Univ. Press, 1978.
- [4] R. Ellis, "Task-based language teaching: Sorting out the misunderstandings," *Int. J. Appl. Linguist.*, vol. 19, no. 2, pp. 121–146, 2009.
- [5] I. S. P. Nation, *Learning Vocabulary in Another Language*. Cambridge, U.K.: Cambridge Univ. Press, 2013.
- [6] R. E. Mayer, "Multimedia learning principles in education," *Educ. Psychol.*, vol. 41, no. 2, pp. 38–53, 2009.
- [7] J. D. Karpicke and H. L. Roediger, "The critical importance of retrieval for learning," *Science*, vol. 319, no. 5865, pp. 966–968, 2008.
- [8] A. Paivio, *Imagery and Verbal Processes*. New York, NY, USA: Routledge, 1991.
- [9] J. Sweller, "Cognitive load theory: Implications for instructional design," *Cogn. Instr.*, vol. 12, no. 1, pp. 1–34, 1994.
- [10] B. J. Zimmerman, "Becoming a self-regulated learner: An overview," *Theory Pract.*, vol. 41, no. 2, pp. 64–70, 2002.
- [11] M. H. Long, "The role of the linguistic environment in second language acquisition," in *Handbook of Second Language Acquisition*. New York, NY, USA: Academic Press, 1996, pp. 413–468.
- [12] S. Mercer, "Learner engagement and affective factors in language education," *Lang. Teach. Res.*, vol. 14, no. 3, pp. 327–345, 2010.
- [13] R. Godwin-Jones, "Emerging technologies in language learning," *Lang. Learn. Technol.*, vol. 22, no. 3, pp. 2–11, 2018.
- [14] M. Immordino-Yang, *Emotion, Learning, and the Brain: Exploring the Educational Implications of Affective Neuroscience*. New York, NY, USA: W. W. Norton, 2016.
- [15] R. Oxford, "Language learning strategies and motivation in foreign language learning," *ELT J.*, vol. 65, no. 1, pp. 45–52, 2011.
- [16] Z. Dörnyei, *The Psychology of the Language Learner: Individual Differences in Second Language Acquisition*. Mahwah, NJ, USA: Lawrence Erlbaum, 2005.
- [17] C. Green and L. Pickering, "Scaffolding and interaction in ESL classrooms," *J. Appl. Linguist.*, vol. 33, no. 4, pp. 412–430, 2012.
- [18] J. Harmer, *The Practice of English Language Teaching*. Harlow, U.K.: Pearson Education, 2015.
- [19] G. D. Kuh, "Engagement as an indicator of student success," *J. Higher Educ.*, vol. 76, no. 3, pp. 276–305, 2007.
- [20] K. Cain and J. Oakhill, "Comprehension strategy training for struggling readers," *Educ. Rev.*, vol. 63, no. 1, pp. 59–75, 2011.
- [21] E. Bialystok, "Cognitive advantages of second language learning," *Develop. Sci.*, vol. 12, no. 4, pp. 464–472, 2009.
- [22] J. Lantolf, *Sociocultural Theory and Second Language Learning*. Oxford, U.K.: Oxford Univ. Press, 2008.
- [23] P. Benson, "Autonomy in language education," *Lang. Teach.*, vol. 40, no. 1, pp. 21–35, 2007.
- [24] S. Gass and L. Selinker, *Second Language Acquisition: An Introductory Course*. New York, NY, USA: Routledge, 2020.
- [25] D. Larsen-Freeman, "A complexity theory approach to applied linguistics," *Appl. Linguist.*, vol. 35, no. 1, pp. 1–10, 2014.